This presentation will discuss accessing data from sensors
using the Linux Kernel's Industrial I1/O subsystem on Arm SBCs
(single board computers).

Melbourne Linux Users Group, aka MLUG
Presented by: Rick Miles
February 24 2020

My current weather station is set up with A Bananapro polling data via I12C from
a Leostick, an arduino clone, which in turn polls two breakout boards via 12C.

Lemaker Freetronics
Bananapro - - Leostick
(I2C master) (I2C master and slave)
A

Adafruit HTU21
Breakout board -
(I12C slave)

Freetronics MS5637
Breakout board <
(I12C slave)

| was never completely satisfied with this setup but have used it for years not
realising that the Linux kernel provided the Industrial 1/O subsystem which allows
for simple direct interface with 12C sensors.

The Industrial 1/0 (110) subsystem provides easy implementation of
drivers for sensors.

It is a subsystem for accessing Analog to Digital Converters (ADCs)
such as temperature sensors, voltage sensors and light sensors.

It can also be used to access Digital to Analog Converters (DACS)

11O devices can accessed on either the 12C or SPI bus

There are three breakout boards with sensor chips connected to this Bananapro
with Slackwarearm installed. From left to right:

e an Adafruit humidity and temperature sensor with a htu21 chip
e a Gravity air pressure, temperature and humidity sensor with a bme280 chip

* a Freetronics air pressure and temperature sensor with a ms5637 chip

The htu21, bme280 and ms5637 are compiled as IO devices. 11O device driver
source is found in the kernel source in the directory /usr/src/linux/drivers/iio with
the source grouped in directories by category. For example the htu21 is a humidity
sensor that can also provide air temperature data.

/usr/src/linux/drivers/iio/humidity/htu2l.c

To compile the htu21 module:

Device Drivers --->
Industrial I/0 support --->
Humidity sensors --->

<M> Measurement Specialties HTU21 humidity & temperature sensor

|2c devices are not detected by the kernel and loaded at boot but with i2c-tools
installed we can use i2cdetect to find their hexidecimal addresses on the i2c

bus on /dev/i2cl.

root@bpro8: i2cdetect -y 1
© 1 2 3 4 5 6 7 8 9 a b c d e f

00: e e mm e mmmm e mm e e e e -

10 -- - —- o - —- oo oo - - om am oo - —o -

20 == == == 22 22 2o me M- M- mm ma e e ee mm -

30 -- - - e am am mm e me me em e em me ae a-

T J Yo

50. _ _ _ - - - - - - - - - - - - - - = - - - - - - - - - =
60:
VACKH

In order for an 12c device module to be loaded at boot the device is described
in a subnode of the DTB. Slackware boots with the mainline kernel DTB for the

Bananapro.

A DTB (device tree blob) is a database that represents the hardware
components and devices on a given board that are loaded at boot. ADTB
Is compiled from a DTS (device tree source) file.

There are also DTBOs (device tree blob overlay). DTBOs are used for
loading devices not described in the DTB. Overlays will be discussed later
in this presentation.

ADTB or DTBO is compiled from a DTS file using the DTC (device tree
compiler). DTC is included in the kernel source but it can also be installed
as a stand alone program to compile and decompile DTB’s outside the
kernel source tree.

DTC is architecture agnostic. You can compile a DTB for an Arm SOC on
an X86 machine.

Device tree bindings are the specifications for how a device Is to be described.
They are found in usr/src/linux/Documentation/devicetree/bindings. Here is the
device tree binding for the htu21l.

*HTU21 - Measurement-Specialties htu2l temperature & humidity
sensor and humidity part of MS8607 sensor

Required properties:

- compatible: should be "meas,htu2l" or "meas,ms8607-humidity"
- reg: I2C address of the sensor

Example:

htu21@40 {
compatible = "meas, htu2l";
reg = <0x40>;

Iy

Slackwarearm does not use DTB overlays. All devices are described in the
mainline sun7i-a20-bananpro.dts which is in the directory /usr/src/linux/arch/arm/
boot/dts. | will add three subnodes for the three sensors to the subnode &12c2
which is /dev/i2cl on the Bananapro.

<snipped>
&i2c0O {
status = "okay";
axp209: pmic@34 {
compatible = "x-powers,axp209";
reg = <0x34>;
interrupt-parent = <&nmi_intc>;
interrupts = <0 IRQ_TYPE_LEVEL_LOW>;
interrupt-controller;
#interrupt-cells = <1>;

status = "okay";

<snipped>

<snipped>
&i2c2 {
status = "okay";

pressure@77 {
compatible = "bosch, bme280";
reg = <OX77>;

+s
htu21@40 {

compatible = "meas, htu21";
reg = < 0x40 >,

+s

ms5637@76 {
compatible = "meas,ms5637";
reg = < Ox76 >;

+s

<snipped>

After saving sun7i-a20-bananpro.dts | cd to the linux source root directory,
compile the new sun7i-a20-bananpro.dts, copy it to /boot/dtb and reboot.
root@bpro8: make sun7i-a20-bananapro.dtb

DTC arch/arm/boot/dts/sun7i-a20-bananapro.dtb
root@bpro8: cp arch/arm/boot/dts/sun7i-a20-bananapro.dtb /boot/dtb

root@bpro8: reboot

After the reboot | can run i12cdetect -y 1 again and confirm that the three
sensors have now been loaded as devices

root@bpro8: i2cdetect -y 1
© 1. 2 3 4 5 6 7 8 9 a b c d e f

00: e M m mm mmmmmmmm e emem e —e oo
150

20 == == == 22 22 2o m- M- m- mm aa e ee e me -

30:
40
50:
60:
70:

Upon boot a pseudo /sys/bus/iio directory is created and the devices can be
accessed from the /sys/bus/iio/devices directory.

| have highlighted the hexidecimal address of each sensor . Note each
sensor has an IO device number, e.g. 0077/iio:device2

sys/bus/iio

| -- devices

| | -- iio:device0
../../../devices/platform/soc/1c2b400.i2c/i2c-1/1-ELHE/iio : [SENEILE)

../devices/platform/soc/1c2b400.1i2c/i2c-1/1-CLE/iio : {ENERSNI

../devices/platform/soc/1c2b400.1i2c/i2c-1/1-CLyd/iio : \ENERSYA

Real time data from the bme280 sensor can be accessed from files In
/sys/bus/iio/devices/iio\.device?2.

root@bpro8: tree /sys/bus/iio/devices/iio\:device2
/sys/bus/iio/devices/1io0:device2

| -- dev

-- 1n_humidityrelative_input

-- 1in_humidityrelative_oversampling_ratio
-- 1in_pressure_input

-- 1in_pressure_oversampling_ratio

-- 1in_pressure_oversampling_ratio_available
-- 1n_temp_input

-- 1in_temp_oversampling_ratio

-- 1in_temp_oversampling_ratio_available
snipped>

|
|
!
|
|
|
|
I
<

root@bpro8: cat /sys/bus/iio/devices/iio\:device2/in_humidityrelative_1input
55944

root@bpro8: cat /sys/bus/iio/devices/iio\:device2/in_pressure_input
99.660562500

root@bpro8: cat /sys/bus/iio/devices/iio\:device2/in_temp_1input

24410

To understand the values returned from the bme280 we can check out the
Industrial IO ABI in /usr/src/linux/Documentation/ABI/testing/sysfs-bus-iio.

What:
<snipped>

Description:

What:
<snipped>

Description:

What:
<snipped>

Description:

/sys/bus/iio/devices/iio:deviceX/in_temp_input

Scaled temperature measurement in milli degrees Celsius.

/sys/bus/iio/devices/iio0:deviceX/in_pressure_input

Scaled pressure measurement from channel Y, in kilopascal.

/sys/bus/iio/devices/iio:deviceX/in_humidityrelative_input

Scaled humidity measurement in milli percent.

The Industrial 1/0 ABI ensures that if it is an 11O device, it must provide data in a
file with a given filename and in a given scale.

Knowing the scale in which the data is returned allows for simple conversion to
understandable measurements

in_humidityrelative_input = 55944*1000 = 55.944% relative humidity

in_pressure_input = 99.660562500*10 = 996.605625 local hPa
in_temp_input = 24410/1000 = 24.41 degrees Celsius

It is obvious that a Bash script could easily manage accessing data from an 11O
sensor and doing something with it but before | move on to DTB overlays here is
a short C program that returns a temperature from the bme280.

#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE *in_file;
// Get temperature //
float air_temp;
in_file = fopen("/sys/bus/iio/devices/iio:device2/in_temp_input", "r'");
fscanf(in_file, "%f", &air_temp);
air_temp = air_temp / 1000;;
printf("\t\nThe temperature is: %.1\n", air_temp);
fclose(in_file);

root@bpro8: ./get-temp

The temperature is: 24.2C

There are two breakout boards with sensor chips connected to

this Raspberry Pi Zero W with Raspbian Buster installed. From
left to right:

* a Gravity air pressure, temperature and humidity sensor board
with a bme280 chip

* An Adafruit uv sensor board with a vemlI6070 chip

The Raspberry Pi Zero W boots with the non-mainline becm2708-rpi-zero-w.dtb which will
boot a minimal system. The file /boot/config.txt is read at boot and any overlay listed in
or uncommented in /boot/config.txt will be appended to bcm2708-rpi-zero-w.dtb.

For example to enable 12C or SPI the corresponding line below would be uncommented

Uncomment some or all of these to enable the optional hardware interfaces
#dtparam=i2c_arm=on
#dtparam=i2s=on

#dtparam=spi=on

Raspbian ships with 186 overlays located in the directory /boot/overlays. While an
overlay for the bme280 or vemI6070 could be written as a DTS, compiled as a DTB and
copied into /boot/overlays. However, the Raspbian overlay i2c-sensors.dtbo enables 12C
and contains fragments for both devices.

Enabling 12C and loading those two devices simply involves appending either one or two
lines to /boot/config.txt

dtoverlay=i2c-sensor,bme280,vem|6070

dtoverlay=i2c-sensor,bme280
dtoverlay=i2c-sensor,veml6070

Fragments describe functional changes to the device tree. This is an overlay fragment
describing the bme280 device. Note that this fragment contains the same subnode
that was added to the sun7i-a2-bananapro.dtb.

fragment@o {
target = < OXFfffffff >;

__dormant__ {
#address-cells = < 0x01 >;
#size-cells = < Ox00 >;
status = "okay";

bme280@77 {
compatible = "bosch, bme280";
reg = < OX77 >;
Iy
Iy
Iy

After boot we can see that the bme280 and vemI6070 have been loaded as devices
on the 12C bus. The veml6070 loads at two addresses but only 0x38 is used to
access data.

root@rpi®-7: i2cdetect -y 1

©® 1 2 3 4 5 6 7 8 9 a b
00: e e e mm e mm e e e -
10: e e e -
AOK e e oo --
30: -- WU U -- --
40 e e - oo -
50: e mm e ee o
60: e e ee e o
70:

/sys/bus/iio
| -- devices
../../../devices/platform/soc/20804000.i2c/i2c-1/1-ELEE/iio : SENERIS

../../../devices/platform/soc/20804000.i2c/i2c-1/1-[CLyd/iio : {ENERLHI

There are two files listed for the vemI6070 that will return values.

root@rpi®@-7: tree /sys/bus/iio/devices/iio:device0
/sys/bus/iio/devices/iio0:device0

| -- dev

IEEMin_intensity_uv_raw

- R

| -- name

<snipped>

root@rpi®-7: cat /sys/bus/iio/devices/iio:device0/ AR
1094

root@rpi@-7: cat /sys/bus/iio/devices/iio:device0/ i NINGILENEELIE

We can find what the values returned from the veml6070 represent in the
sys-bus-iio ABI.

What: /sys/.../1iio:deviceX/in_intensity_uv_raw

<snipped>

Description:
Unit-less light intensity. <snipped>. Modifier
uv indicates that measurements contains ultraviolet light
components. <snipped>

What: /sys/.../1io:deviceX/in_uvindex_input

<snipped>

Description:
UV light intensity index measuring the human skin's response to
different wavelength of sunlight weighted according to the
standardised CIE Erythemal Action Spectrum. UV index values range
from @ (low) to >=11 (extreme).

The the C program on the following slide provides an example of how data from
the veml6070 device can be used.

root@rpi0-7: ./get-uv

The raw UV level is: 1094, The UV Index is: Moderate

#include <stdio.h>
#include <stdlib.h>
int main()
{
FILE *in_file;
int uv_index;
int uv_raw;
// Get raw uv
in_file = fopen("/sys/bus/iio/devices/iio:device®@/in_intensity_uv_raw","r");
fscanf(in_file, "%d", &uv_raw);
fclose(in_file);
printf("The raw UV level is: %d, The UV Index is: ", uv_raw),;
// Get UV index //
in_file = fopen("/sys/bus/iio/devices/iio:device®@/in_uvindex_input", "r");
fscanf(in_file, "%d", &uv_index);
fclose(in_file);
if (uv_index <= 2) printf("LOW");
1f (uv_index > 2 && uv_index <=5) printf("Moderate");
if (uv_index > 5 && uv_index <=7) printf("High");
if (uv_index > 7 && uv_index <= 10) printf("Very High");
if (uv_index >= 11) printf("Extreme");

The Industrial I/O Linux subsystem offers a unified framework to communicate (read and
write) with drivers covering many different types of embedded sensors and a few
actuators. It also offers a standard interface to user space applications manipulating

sensors through sysfs and devfs. !

The aim is to fill the gap between the somewhat similar hwmon and input subsystems.
Hwmon is directed at low sample rate sensors used to monitor and control the system
itself, like fan speed control or temperature measurement. Input is, as its name
suggests, focused on human interaction input devices (keyboard, mouse, touchscreen,?

This presentation’s focus was to provide some practical examples of using IlO devices.

If you are interested there is much more information about the Industrial /O subsystem
available on the net such as the two links footnoted below.

1 https://wiki.st.com/stm32mpu/wiki/llO_overview
2 https://www.kernel.org/doc/html/v4.14/driver-api/iio/intro.html

https://wiki.st.com/stm32mpu/wiki/IIO_overview
https://www.kernel.org/doc/html/v4.14/driver-api/iio/intro.html
https://www.kernel.org/doc/html/v4.14/driver-api/input.html
https://www.kernel.org/doc/html/v4.14/driver-api/input.html

Any questions?

Appendix 1

| have attached a C program on the following slides that | will adapt for my next
weather station setup. It prints a line of data in .csv format that can be parsed for
specific values when updating my local weather webpage

root@rpi®@-7: ./get-w-data

24.6,61.0,16.6,25.7,1018.9,1049, Medium

Feel free to use it and/or adapt it to suit your needs. Note that you may have
problems on a Raspberry Pi. Device numbers might change from one boot to
the next. This seems to be a problem that other folks have also had with
Raspberry Pi’'s. This wasn’t a problem on my Bananapro running Slackware. If
you run the program and get a segmentation fault your device numbers have
most likely changed.

//
//
//
//
//
//

get-w-data rm20200215

Tested with bme280 and veml6070 sensors.

Prints weather data in .csv format.

Compile with 'gcc -1m' to link the math library.

The variable 'elv_adjst' is the difference in hPa between my
home and MSL (mean sea level) hPa.

#include <stdio.h>

#include <stdlib.h>

#include <math.h>

const float elv_adjst = 8.77,;
int main()

{

FILE *in_file;

// Get temperature, bme280 is devicel

float air_temp;

in_file = fopen("/sys/bus/iio/devices/iio:devicel/in_temp_input", "r");
fscanf(in_file, "%f", &air_temp);

air_temp = air_temp / 1000;;

fclose(in_file);

// Get relative humidity, bme280 is devicel

float rel_hum;

in_file = fopen("/sys/bus/iio/devices/iio:devicel/in_humidityrelative_input"
fscanf(in_file, "%f", &rel_hum);

rel_hum = rel_hum / 1000;

fclose(in_file);

llr-ll);

// Get air pressure and convert to MSL hPa, bme280 is devicel

float air_prssr;

in_file = fopen("/sys/bus/iio/devices/iio:devicel/in_pressure_input",

fscanf(in_file, "%f", &air_prssr);
air_prssr = air_prssr * 10 + elv_adjst;
fclose(in_file);

// Calculate dew point

float dew_pt = powf((rel_hum/100), (1.0/8.0))
*(0.9%air_temp +112)

+(0.1%air_temp)-112;

// Calculate heat index.

float ht_ndx =-8.784695 +

1.61139411 * air_temp +

2.33854900 * rel_hum +

-0.14611605 * air_temp*rel_hum +

-0.01230809 * powf(air_temp, 2) +

-0.01642482 * powf(rel_hum, 2) +

0.00221173 * powf(air_temp, 2) * rel_hum +
0.00072546 * air_temp * pow(rel_hum, 2) +
-0.00000358 * pow(air_temp, 2) * pow(rel_hum, 2);

Ilrll);

// Get raw uv, good for graphing, veml6070 is device0®

int uv_raw;

in_file = fopen("/sys/bus/iio/devices/iio:device®@/in_intensity_uv_raw", "r");
fscanf(in_file, "%d", &uv_raw);

fclose(in_file);

// Get UV index as number, veml6070 is device0O

int uv_index;

in_file = fopen("/sys/bus/iio/devices/iio:device0/in_uvindex_input", "r");
fscanf(in_file, "%d", &uv_index);

fclose(in_file);

// Print data in .csv format
printf("%0.1f,%0.1f,%0.1f,%0.1f,%0.1f,%d, ",
air_temp, rel_hum, dew_pt, ht_ndx, air_prssr, uv_raw);

// Get UV index and append to the line of data

if (uv_index <= 2) printf("LOW");

if (uv_index > 2 && uv_index <=5) printf("Moderate");

if (uv_index > 5 && uv_index <=7) printf("High");

if (uv_index > 7 && uv_index <= 10) printf("Very High");
if (uv_index >= 11) printf("Extreme");

return 0;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

