
A Model for Data Processing on Warehouse-Scale
Computers

Kevin Exton
School of Computing and Information Systems

The University of Melbourne
Melbourne, Australia

Email: kevin.exton@student.unimelb.edu.au

Maria Read
School of Computing and Information Systems

The University of Melbourne
Melbourne, Australia

Email: maria.read@unimelb.edu.au

Abstract—Modern data processing workloads often have highly
unpredictable end-to-end latency characteristics that are caused
by heterogeneity, time-variation, and parallelized processing.
The increase in unpredictability is in part attributable to job
“straggling”, and is symptomatic of a new class of stochastic
scheduling challenges that will degrade the performance of
current and future applications at scale. While the job scheduling
literature for data processing frameworks is rich with ideas; there
is little coordination between research groups on methodology
and presentation, stunting the ability for designers to survey a
collection of results and draw generalizable conclusions about
good design patterns. We introduce an abstract system model
for data processing on warehouse scale machines that aids
in eliminating ambiguity in the job scheduling research by
categorizing schedulers based on where they act on the system in
the job processing data pathway. Furthermore, we demonstrate
that although the scheduling problem is NP-Hard in the general
case, it is still possible to derive scheduler design principles using
bounds and asymptotics.

Index Terms—Job Scheduling, Distributed Data Processing,
Warehouse-Scale Computers

I. INTRODUCTION

Cloud computing and the resource-as-a-service model it
supports has seen an explosive increase in popularity since
its inception. From 2010 to 2022, the cloud computing mar-
ket grew from a mite, $40.7 billion [1], to a mint $446.4
billion [2]. This growth has seen cloud computing, and the
warehouse-scale [3] infrastructure that drives it, become ubiq-
uitous across a wide variety of applications such as data
processing [4]–[6] and machine learning [7].

It was noticed from early on [8], that to support services
that are interactive and user-facing, computational workloads
need to trend towards applications that have shorter end-
to-end delays or latencies. For single server systems (and
to a lesser extent, multiserver systems), the precise latency
characteristics of a wide variety of scheduling policies have
been comprehensively studied in the context of queuing the-
ory [9]–[11]. However, warehouse-scale computers are not as
well understood since they have many additional dimensions
of control required of them [3, Ch. 2], e.g., the dynamic
allocation of resources and the sequencing and assignment of
arriving workloads to those resources. The sheer size of these
machines, which can be composed of as many as 50 000 to
80 000 physical servers [12] and draw in excess of 100MW of

power [3, Ch. 4], means that new challenges have emerged as
a direct consequence of scale which must be managed by the
control plane of these warehouse-scale machines. One such
example of an emergent complexity to job scheduling at scale
is the discovery of delay skew, or job “straggling”, caused by
instantaneous variations in parallel node performance [13].

A first consequence of this “straggling” phenomenon is that
application performance appears to become more random as
the computer grows in size. From the point of view of applica-
tion developers and system administrators, developing a strong
intuition for the nature of a random computer system now
becomes a necessary condition to design and maintain high-
performing applications at scale. This is a very challenging
task as pertinent phenomena (such as job straggling) only
become measurable once applications or systems cross certain
size thresholds, rendering small-scale experiments, prototypes,
and test benches irrelevant due to the inability to accurately
capture the random characteristics of a large-scale machine.
Furthermore, the traditional intuitions, deeply embedded in
highly skilled and experienced designers, to focus on small-
scale metrics such as I/O performance, cache performance,
number of requests, round-trip times etc., are of decreasing
relevance as applications increase in scale because the number
of extremely rare and highly disruptive events grow to non-
negligible quantities as a consequence of the law of large
numbers. For instance, an analysis by Garraghan et al. [14]
argues that as few as 5% of straggling tasks in a system
degrades the performance of as many as 50% of all jobs being
processed.

Consider an application that uses an in-memory database,
like Redis [15], to cache data. Cache misses at small scales
will fall back to a co-located disk, or perhaps a networked
file system with disks that are physically located nearby. The
maximum request latency will be on the order of magnitude of
5-10ms worse than the minimum request latency [16, Ch. 2],
and the variance in application latency will be determined by
the frequency of cache misses. At larger scales, a cache miss
may be able to fall back to a nearby disk, but it also may
require network requests to external services to retrieve data.
In turn, these external services may have their own caches that
may require additional network requests to yet more external
services to retrieve data. For incredibly large applications, i.e.,

ones operating at a global scale, maximum request latency may
be many seconds worse than minimum latency, and variation
in latency will be a function of the cost and frequency of
cache misses over all the interconnected services required to
process a request. Optimizing the cache performance of all
these interconnected services may reduce variance in request
latency, but unless a guarantee can be made of 0 cache misses
somewhere in the data pathway, variance in request latencies
must increase as an application scales.

A. Key Contributions

Unlike single server systems or even small-scale data
centers, the prohibitive cost of acquiring a warehouse-scale
computer limits the amount of knowledge that can be ac-
quired through small-scale experimentation. As such, many
researchers and designers have been turning towards math-
ematical models to guide their design decisions [17]–[19].
In the domain of job scheduling, much of this thinking
has been focused on improving the delay characteristics of
parallelizable data processing workloads for frameworks like
MapReduce [4]. Although all of this work ostensibly focuses
on the problem of job scheduling on warehouse-scale com-
puters, there is a distinct lack of coordination between authors
regarding the precise method in which to justify their design
decisions. This has resulted in a great diversity of models,
measurements, charts, language, and experiments which make
it extraordinarily difficult to develop a precise understanding
of what a warehouse-scale computer is, as well as compare
different approaches to each other on a like-for-like basis.
Taking one step towards resolving this matter, our contribution
is in two parts:

1) Novel Modeling: We design an extensible model for
warehouse-scale machines that defines abstractions for some
of the most important design and operational features of a
computer. As the focus of our research is predominantly job
scheduling, we have defined only the features of a computer
that are necessary to study job schedules. However, the model
defines the available operations for data transfer, storage, and
processing that are common to any computing problem.

We describe our model in section III. Here, we define impor-
tant ideas like the job schedule, and computational input/output
relationships. The objective of our model is to provide a
simple, extensible, and highly general framework that can be
used both as a reference for implementing simulation tools and
as a means to eliminate ambiguity in the research dialogue sur-
rounding warehouse-scale job scheduling. We have developed
our own simulation tool for designing scheduling algorithms
for warehouse-scale applications, which is available from [20].

2) Design Principles: We use our model to derive general
principles that are to be kept in mind when designing systems
and applications for very large scales. We call these our
warehouse-scale job scheduling design principles. Three of
these principles have been enumerated in section IV. Our list
of design principles is far from comprehensive and is mostly
composed of mathematical theorems that have been derived in
the context of queuing theory, reliability theory, and renewal

theory which we have translated to the context of warehouse-
scale computers. The design principles we present are:

1) The Minimax Design Principle
2) The Principle of Capacity Constraints and Throughput

Invariance
3) Gang Scheduling and the Processor Sharing Bound

II. BACKGROUND AND RELATED WORK

Job scheduling for warehouse-scale applications, especially,
data processing applications on frameworks like MapRe-
duce [4], Spark [5], and Dryad [6] is an extensively studied
problem. In the empirical and applied literature, many ideas
and architectures have been proposed over the years [21]–[23].
Despite the common interest in data processing frameworks,
many of these ideas take entirely different approaches with
only a limited number of common features. In the theoretical
domain, there is a similarly immense quantity of recent
research [24]–[26]. Despite this work being more amenable to
modeling adjustments and iteration, many of the publications
in the theoretical literature can be clearly distinguished by
their analytical themes depending on whether the authors are
trying to solve the job scheduling problem using tools from
information theory [19], scheduling theory [25], or queuing
theory [26]. Authors subscribing to different ideas rarely
cross over to neighboring domains, and results from different
domains are difficult to directly compare, even though they
are usually trying to solve the same problem.

The parallel nature of the job scheduling problem means
that combinatorial optimization approaches suffer from being
NP-Hard [27]. The separation of jobs into small tasks to be
serviced in parallel leaves general formulations of the queuing
problem similarly intractable [28]. These limitations of exact
analysis may be partially responsible for splintering the job
scheduling research. Much of the remaining difficulties seem
to be attributable to differences in the way information is
presented in the research, including differences in experi-
mental methodology [17], [29] and the choice of units of
measurement [8], [30].

Without a clear and consistent method to compare schedul-
ing techniques from different domains of study, scheduler
implementations are limited to making mutually exclusive
decisions about the inclusion of scheduling algorithms based
on subjective preferences rather than objective criteria. Fur-
thermore, hybrid schedulers that multiplex many different
scheduling algorithms based on workload and environmental
factors have limited room for development since determining
whether a combinatorial approach like Quincy [17] will out-
perform a queuing approach like Sparrow [8] under specific
operating conditions is currently very difficult. There is also
no evidence to suggest that different scheduling techniques act
on system performance metrics in such a way that the simul-
taneous application of multiple algorithms will outperform the
mutually exclusive selection of one over another.

The haphazard investigative approach towards job schedul-
ing for warehouse-scale computers means that many re-
searchers and designers must arrive independently at their own

guiding design principles. Tiny tasks [8], encoding techniques
from information theory [19], coflows [25], and speculative
execution [31], are among the many scheduling principles
that have been proposed over the years. Each of these design
principles will be effective under potentially different specific
operating conditions determined by parameters such as work-
load characteristics, job arrival rate, system capacity, available
data storage, and available network bandwidth. Without a
common framework for comparison, it is difficult to make
these nuanced considerations, leaving ideas open to rebuttal
by demonstrating that under different operating conditions one
or more of these principles can be invalidated [32].

To facilitate better communication between different re-
search groups and forge clear paths towards more effective
warehouse-scale job scheduling algorithms, work must be
done towards developing a common framework for investi-
gation and measurement so that different ideas and techniques
can be compared on a like-for-like basis. Despite the volumes
of pre-existing modeling work for related problems in queuing
theory [11], reliability theory [33], scheduling theory [34], and
point process theories such as renewal theory [35], we have
found no work in the warehouse-scale job scheduling literature
that is focused on developing clear and precise definitions
for the important parameters of warehouse-scale computers,
nor is there any work in the literature on developing and
justifying robust methods of measurement based on objective
requirements. For instance, latency measurements taken at low
system utilization [18], or at high utilization for a short period
of time [17], or by rescaling benchmark traces to accommodate
a smaller scale deployment [21], all potentially introduce
nuisance factors that skew the final measurements. Without
any means to normalize the numerical values in this research
to a common standard, it is very difficult to compare results
between different authors.

III. AN ABSTRACT INTERFACE MODEL FOR SIMULATION
AND DESIGN

Differences in method and presentation across the job
scheduling literature make it difficult to deduce precise quali-
tative and quantitative features of warehouse-scale computers
from the research alone. Authors often differentiate designs
based on architectures and abstractions that are intimately
related to the hardware platforms and application frameworks
that they are targeting. The high degree of specificity makes
results derived in this way credible, the method, though,
makes finding generalizable design principles by comparing
results against each other terribly challenging. It is common,
for instance, to divide designs between centralized [17] and
decentralized [8] architectures. Also common, is to apply
abstractions to model the communications network [36], job
operational dependency structures [37], or job service time
characteristics [19], or data storage architectures [24]. Al-
though each of these distinctions appears very different, when
taken together, it seems likely that there is a significant amount
of overlap in the performance benefits provided by each.

J Inbox Server Set Outbox

Controller

S

T

(1)

(2) (3) (4) (5)

(6)

Fig. 1. Scheduled Computer Components. Typical flow of data is (1) – (6)

Our model is designed to relieve some of the difficulty that
comes with attempts to directly compare different scheduling
approaches in the research. We achieve this by defining
warehouse-scale computers in terms of the strict unidirectional
flow of data that is governed by a control plane or controller
(illustrated in Fig. 1). Every scheduler in the literature must
act on this system at one or more of the precise data flow
interfaces in our model, allowing designers to quickly deter-
mine which approaches are likely to be mutually exclusive.
For instance, the coflow-based approaches we reference and
the pull-based approaches we reference both act on the system
in the data flow pathway at interfaces (2) and (3) in Fig. 1.

To provide researchers and designers with flexibility, our
model defines an abstract system architecture for warehouse-
scale computers constructed from “abstract interface” style
components that are connected together. In this spirit, for each
component in our system we have defined only a minimum
set of requirements that must be met to satisfy the functional
needs of a warehouse-scale computer and leave many of the
specific operational and implementation details open. This ap-
proach is useful when implementing scheduling algorithms for
comparison in simulation, and we have implemented our own
simulator (available from [20]) equipped with round-robin,
random, and Sparrow [8] scheduling algorithms. Designers
looking to integrate algorithms with our simulator (or any
simulator built on our abstract architecture) must translate the
abstractions used in their algorithms to precise actions and
associated costs with respect to the data flow interfaces in the
model.

A. Model, Component and Interface Overview

A warehouse-scale computer is made up of four logical
components and six logical interfaces (Fig. 1). How each of
these components and interfaces is implemented (no matter
whether in software or in hardware) is left to the system de-
signer. In particular, the components and interfaces may have
either centralized or decentralized implementations: central-
ized component implementations mean that there are no net-
worked communication costs for algorithms that are internal
to the component and that the bandwidth for associated data
flow interfaces may be defined by a single node, decentralized
component implementations mean that internal algorithms in
the component may suffer from networked communication
costs and that the bandwidth for associated data flow interfaces
may be spread out over many nodes. Each component in the
model is defined in terms of a minimum number of necessary

TABLE I
A CONTROLLERS VIEW OF JOB SCHEDULING

Job ID Inputs Outputs Arrival Time Completion Time

01 i1,1, . . . , i1,n o1,1, . . . , o1,n 0
02 i2,1, . . . , i2,m o2,1, . . . , o2,m 10 30
03 i3,1, . . . , i3,k o3,1, . . . , o3,k 15

...
...

...
...

...

N

iN,1

oN,1, . . . , oN,7 t t+∆t

iN,2 = oN,1

iN,3 = oN,1

iN,4 = oN,3

iN,5 = oN,3

iN,6 = oN,3

iN,7 =
(
oN,2, oN,4, oN,5

)

conditions that must be met for the warehouse-scale computer
to function properly.

1) Job Inbox: Inputs to the warehouse-scale computer are
abstracted in terms of an arriving sequence of jobs, J =
{j1, . . . , } that must be processed. The controller is responsible
for organizing the arriving input data and placing it via logical
interface (1) into the job inbox. Mathematically, the job inbox
is an unordered set, and data that is placed in the inbox is
done via the set inclusion operation. Any abstractions (such
as queuing) that are built on top of the set are implemented
in the controller component, not the job inbox. The inbox has
infinite memory, so removing data from the inbox is never
necessary.

2) Server Set: Each server in the server set is an abstract
representation of all the application resources (including hard-
ware resources) that are needed to process data from the inbox.
Interface (3) is used by the controller to select and assign data
to a server to process and can be a “push” or a “pull” based
interface. Interface (4) is used by the controller to retrieve
outputs from servers after they have finished processing,
this can also be a “push” or a “pull” based interface. Each
server must internally define accountable resource costs (time,
memory, or other hardware resources) for data processing.

3) Job Outbox: After data has been processed at a server,
the controller is responsible for retrieving the outputs over
interface (4), organizing and placing these outputs in the
job outbox over interface (5). The job outbox is the final
destination for data in the data processing pathway. Once an
input job no longer has any more outputs that need to be placed
in the outbox, the job has “cleared” the system. Similar to the
job inbox, the outbox is an unordered set with data added to it
via set inclusion. The outbox has infinite memory, so removing
data from the outbox is never necessary.

4) Controller: The controller is responsible for moving
arriving job data through to the job outbox via interfaces (1)-
to-(5) strictly in this order (reverse movement is an illegal
operation). The secondary function of the controller is to
take and report relevant performance measurements, which are
emitted on interface (6). We have defined job schedules in
terms of a job’s end-to-end latency or delay, which is emitted
from interface (6). Future extensions may wish to define new
metrics that are emitted on this interface.

TABLE II
TWO VALID SEQUENCINGS OF THE JOB IN FIG. 2

Index 0 1 2 3 4 5 6

Sequence 1 o1 o2 o3 o4 o5 o6 o7
Sequence 2 o1 o3 o2 o6 o4 o5 o7

o1

o2 o3

o4 o5
o6

o7

Fig. 2. Directed Acyclic Graph (DAG) of a Job with 7 Operations.

B. Jobs, Operations, and the Input/Output Relationship

Data processing jobs are composed of many operations
that may have dependencies between each other. Individual
operations are chunked to a degree of granularity appropriate
to the scale of the job. For instance, for large-scale map-reduce
jobs, an operation might be applying the map function to
an individual input data partition rather than the individual
arithmetic operations that are performed by the underlying
CPU. Each operation has a relationship between inputs in
the inbox to outputs in the outbox, and when operations have
dependencies between each other, the outputs of one operation
may be equal to the inputs of another. The flow of data through
a job is then typically studied using a directed acyclic graph
(DAG) such that every valid sequencing of operations is also a
valid topological ordering of the graph. For instance, Table II
lists two valid sequencings of the operations illustrated in
Fig. 2.

The inputs and outputs of operations in our system can be
tracked by the controller using a table or ledger where each
operation in a job has associated inputs, outputs, and some
additional metadata to measure latency and track job state,
e.g., job 1 has inputs i1,1, . . . , i1,n, outputs o1,1, . . . , o1,n, an
arrival time, and a completion time. The dependency structure
of the operations means that some of the inputs are equal to
some of the outputs, i.e., input 2 can be equal to output 1. For
instance, the N ’th entry in Table I illustrates the entry that will
exist in the controller if the job listed in Fig. 2 completes.

For sequences of jobs, J , we use a job-shop scheduling
model to characterize the control flow of work within the
computer system. In the job-shop model, sequences of jobs,
J , must be assigned servers to execute the operations within

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

t

P

Fig. 3. The Schedule: P (T < t).

each job in a sequence that satisfies the dependencies between
operations. Since computers are general purpose machines
capable of handling any computational operation (instead
of the alternative scenario where there is a collection of
specialized machines that are only capable of handling one
type of operation), the system controller is allowed to assign
any number of operations from a single job to the same
server. For systems with a single server, this property of
assigning multiple operations from a single job to the same
server in a sequence is called recirculation. In the distributed
multiserver case, operations can be assigned to any server
from a bank of parallel servers, and since all the servers are
general purpose, operations can be sequenced and assigned to
any subset of this bank multiple times. This extension to the
job-shop with recirculation is known as the flexible job-shop
with recirculation [27].

There is an important difference between the traditional
flexible job-shop and the one we use in our model. In the
traditional approach, the inputs of each operation must be
consumed in order to produce an output. This is a natural
way of thinking about production lines or factories; e.g.,
raw materials like iron must be consumed to produce steel.
However, computer systems can copy instructions and data
when assigning work to servers, so they do not consume
inputs in the same way that factories do. This is reflected
in our model by the way the controller can continue to track
inputs even after operations have been assigned to servers, and
even after the operational outputs have been produced. Since
many distributed computer systems use distributed ledger tech-
nologies and model their inputs and outputs as append-only
event streams, we can think of the inbox and outbox of our
system as distributed ledgers. In this way, the controller keeps
a copy of all the operational inputs and outputs of scheduled
jobs in transaction receipts, and can reuse data whenever the
scheduling policy dictates that data should be reused. For
instance, in Google’s MapReduce [4], slow-running tasks are
relaunched by the controller towards the end of a job to reduce
the tail latencies of job execution.

Spout

Spout

Bolt

Bolt

Bolt

Bolt

Fig. 4. Stream Processing Graph with Storm [38]

C. Example: Stream Processing with Storm

Consider how we might overlay a typical Storm stream
topology comprised of Spouts and Bolts, as illustrated in
Fig. 4, onto our model. Jobs arrive at the computer in a
sequence, J = {j1, . . .}, where each job, ji, is represented by
data that has been emitted by a data source. The first action
that a computer must take in our model is to assign each job
a collection of inputs, outputs, and associated relations that
determines the data processing dependencies. Streams provide
the abstraction representing dependency relationships between
inputs and outputs in Storm. Job data, then, is constructed from
a sequence of tuples that are emitted as outputs by Spouts and
Bolts, intermediate tuples that are passed between Bolts over
links are outputs that are recirculated by the computer to serve
as an input to the next relation in the graph.

Storm Spouts are distributed members of the control plane
or controller component: they act on interface (1) of a com-
puter by taking arriving jobs and including them into the
inbox, they also act on interfaces (2) and (3) by sending the
first inputs of each job to one or more Bolts. When a Bolt
finishes processing an input tuple, it will emit an output tuple
to the controller over interface (4). A message broker often
serves as the component in the Storm controller that receives
these outputs, determines if the job has “cleared” the system
by cross-referencing the accumulated outputs with the stream
definition over interface (5), and if not, recirculates the outputs
to serve as inputs to the next Bolt in the stream over interface
(3).

D. Scheduling Jobs

Although the flexible job-shop scheduling problem is well
understood to be NP-Hard [27], we can exploit the law of large
numbers to study a simpler aggregate scheduling problem.
To study the aggregate performance of the system, we can
measure the end-to-end execution latencies of many jobs as
they are emitted by the scheduler and plot their cumulative
frequencies to construct the distribution illustrated in Fig. 3.
We refer to this distribution of scheduler outputs, T , as the
schedule. Since the schedule is inclusive of all waiting and
service time delays, we are not making any assumptions of
time-invariance or homogeneity, this is simply the empirical
distribution of end-to-end latencies. This approach is advan-
tageous since it seems to be the natural choice for authors

when investigating scheduling performance [39], although
alternative visualizations like the box-and-whisker chart are
sometimes used to illustrate the distribution [8]. For jobs
consisting of parallel operations, the schedule comprises the
superposition of parallel random processes, as we illustrate in
Fig. 3.

The end-to-end latency of each job is measured from the
moment the job arrives at the inbox to the first moment that
a job has no more work to be done (the job has no more
outputs to be placed in the outbox). End-to-end job latencies
are therefore inclusive of all waiting and service times, this
latency is also referred to as the response [8], or delay time of
a job [9]. In the simplest case, this system is a feed-forward
control system that takes a sequence of jobs, J , as its input and
produces a sequence of latencies as its output in much the same
way as a queuing system. For traditional queuing problems, the
output, T , can be considered to be a random variable with an
empirical distribution function F (·) that represents the delay
times of the jobs in J . While this delay time distribution is
quite well understood for a wide variety of queuing problem
formulations e.g., M/M/1, M/G/1, M/M/k, M/G/k etc,
our model allows for formulations that are not considered
standard within the domain of queuing theory. For instance, the
controller in our model can divide a job up into smaller opera-
tions over interface (1). Additionally, as jobs are placed in the
inbox with no particular ordering structure, the controller must
make ordering and sequencing decisions of jobs and operations
that set it apart from traditional queuing problems. Finally,
the theoretical model has infinite memory so that the inbox
and outbox can store an infinite amount of data which the
controller can reference at any time. This facilitates special
operations like operation repetition and data replication that
traditional queues as well as many scheduling algorithms do
not take into consideration.

IV. THE SCHEDULING DESIGN PRINCIPLES

Our model is designed to accommodate abstractions that
aid designers to accurately, and efficiently, reason about very
large-scale systems and applications. We demonstrate this
by presenting three design principles for job scheduling on
warehouse-scale computers. Our design principles emphasize
the role of proven results drawn from the deep pool of ideas
in closely related fields of study, especially, queuing theory,
and renewal theory.

A. The Minimax Design Principle

The minimax design principle provides designers with guid-
ance on when and where they should prioritize optimiza-
tion during the design and implementation of systems or
applications. Roughly speaking, it says that to achieve the
best possible overall performance, the best-case performance
should be statically optimized by the system or application
design, and the worst-case performance should be dynamically
optimized by the system or application scheduler. In essence,
the best-case performance of a system or application is the per-
formance that the system or application achieves under ideal

conditions, so it should be optimized as much as possible in the
design and implementation phases. Conversely, the worst-case
performance of a system or application comprises the worst
outcomes achieved under “real-world” or dynamic conditions.
Usually, this has little to do with system or application design
and more to do with outside factors like system faults or
resource contention, and so it must be managed by the system
or application scheduler.

Principle 1 (The Minimax Schedule Design Principle). Recall
that a schedule, T , is a non-negative random variable with
an empirical distribution function F (·). A minimax schedule
design works in two phases:

1) Optimize the schedule so that the left-hand side of the
support (the minimum value that can be taken by T) of
F (·) is as close to 0 as possible.

2) Design a scheduling policy that minimizes or reduces
the frequency of all outcomes, t in the support of F (·),
chosen such that 1−F (t) ≤ p for an arbitrarily chosen
p ∈ (0, 1).

To justify this design principle, we need to define a stochas-
tic ordering of possible schedules and understand a sufficient
condition for two job schedules to be stochastically ordered.

1) Stochastic Order Comparison of Job Schedules: Two
schedules, T1, and T2, are stochastically ordered such that T1

precedes or is shorter than T2, denoted T1 ⪯ T2, if and only
if, for every fixed time, t > 0, the proportion of jobs that
have not yet finished by t in T1 are less than or equal to the
proportion of jobs that have not yet finished by t in T2,

T1 ⪯ T2 ⇐⇒ P (T1 ≥ t) ≤ P (T2 ≥ t) , for all t > 0 (1)

two important first consequences for schedules that can be
ordered in this way are:

• By definition, if T1 is shorter than T2, T1 ⪯ T2, then for
any fixed time t > 0, the proportion of jobs in T1 that
finish by time t will always be greater than the proportion
of jobs in T2 that finish by time t.

T1 ⪯ T2 ⇐⇒ P (T1 ≤ t) ≥ P (T2 ≤ t) for all t > 0

• By application of an expected value formula for non-
negative random variables:

E [T] =

∫ ∞

0

1− F (t) dt =

∫ ∞

0

P (T > t) dt

it can be clearly seen that if T1 is shorter than T2, then the
expected value of T1 will be smaller than the expected
value of T2:

T1 ⪯ T2 =⇒ E [T1] ≤ E [T2]

2) A Sufficient Condition for the Ordering of Job Schedules:
To complete our argument, we need to understand the suffi-
cient condition for job schedules to be ordered given by [40,
Thm 1.A.17]:

0 1 2 3 4 5 6

0

0.2

0.4

0.6

0.8

1

t

P

schedule T1 schedule T2

Fig. 5. Stochastic Ordering such that T2 ⪯ T1

Theorem 1. Let X be a random variable, and let ϕ1 and ϕ2

be two functions that satisfy:

ϕ1 (x) ≤ ϕ2 (x) for all x ∈ R.

then:
ϕ1 (X) ⪯ ϕ2 (X)

for which special cases are when ϕ1 (X) = X or ϕ2 (X) = X .

To interpret this theorem, we consider a schedule T1 with
an empirical distribution function F (t). If we can design a
scheduling policy to produce a schedule, T2 with empirical
distribution function G (t), such that the following relationship
holds:

F (ϕ (t)) = G (t) such that t ≤ ϕ (t) for all t > 0

then it follows from Theorem 1 that T2 ⪯ T1. Since there are
no conditions placed on the function ϕ, especially, that it does
not need to be linear, and it does not need to be continuous,
we can construct a schedule T2 from any given schedule T1,
by taking events that occur at arbitrary times t > 0 in T1

and reducing their frequency (see Fig. 5 for example). From a
practical point of view, it seems likely that the less frequently
an event occurs, the easier it will be to further reduce the
frequency.

B. The Principle of Capacity Constraints and Throughput
Invariance

A common piece of folk advice among system adminis-
trators is that there is always a trade-off that must be made
between application throughput and application latency [41].
The history and source of this advice is difficult to track down.
However, if we examine the Pollaczek-Khinchine formula for
the expected end-to-end delay of an M/G/1 queue [9, Ch. 16]:

E [D] = E [W] +
1

µ

=
ρ+ λµσ2

s

2 (µ− λ)
+

1

µ

(2)

and consider that the maximum average throughput or capacity
of this system is given by µ, while the average latency is
given by the reciprocal of the maximum average throughput
plus an average waiting time, the advice that there is a trade-
off between throughput and latency appears true for single-
server systems. It seems plausible, then, that this advice is
a rusted on remnant of older and simpler systems. We argue
that this relationship between capacity, throughput, and latency
becomes less important as the number of parallel servers in the
system increases. This forms the basis of the second principle
of design.

Principle 2 (The Principle of Capacity Constraints and
Throughput Invariance).
Given two scheduling policies that produce schedules T1 and
T2 respectively. It is possible that these different schedules will
have different aggregate service rates, or system capacities,
denoted µ1 and µ2 respectively. Then:

1) As long as the job arrival rate, λ, remains smaller than
the min (µ1, µ2), the average throughput, or carried
traffic of the system is equal to λ for both policies and
the schedules are considered to be throughput invariant.

2) A scheduler is free to use any forms of operation rep-
etition, data redundancy, or resource over-subscription
rules available to it as long as the average job arrival
rate, λ, remains below the system capacity, µ.

To understand the second principle of design, we need to
be precise about the definition of throughput and understand
some of its characteristics.

1) Throughput, Latency, and the Renewal Theorem: The
average number of jobs that a system can complete in each
second is an intuitive notion of system throughput. A typical
way of measuring system throughput is to count the number
of jobs that are completed over a fixed interval of time (0, t],
and then divide by the time t. This definition can be made
formal by using a counting random process. Let N (t) be
the total number of jobs that have finished processing in the
time interval from (0, t]. Then for any choice of t, N (t) will
be a random variable, and the family of random variables1

defined by {N (t) , 0 < t < ∞} is called a counting random
process [33, Ch. 2]. If the intervals between completions, or
the inter-completion times of a computer system are i.i.d., then
the average or expected number of completions in this interval
is called the renewal function [35, Ch. 4], E [N (t)] = m (t).
Subsequently, we know from the renewal theorem that the
average system throughput is asymptotically equal to

lim
t→∞

m (t)

t
=

1

E [∆C]

where ∆C is the random variable associated to the time
interval between completions. Since the average throughput
given by the renewal theorem is an average over all time, it can
not be changed by simple rearrangements, as is the common
approach for proving results in the finite domain of scheduling

1set of distinct, but not necessarily independent random variables

theory. We can illustrate this by way of a finite time analogy
that demonstrates how parallelizing a job changes the average
delay while holding the average throughput fixed.

Consider the job schedule of 3 operations as illustrated in
Fig. 6a. The completion times of operations o1, o2, o3 are
C1, C2, C3 respectively. the average number of operations
served per second is equal to:

average operation throughput =
1

E [∆C]
(3)

We will assume that servers can only process one operation at
a time, the operations must be processed sequentially and as
the job has 3 operations, the average job throughput is found
by taking the sum of the operational inter-completion times
giving:

average job throughput =
1

E

[
3∑

i=1

∆Ci

]
=

1

3E [∆C]

(4)

and the average job delay is simply the reciprocal of job
throughput:

average job delay = 3E [∆C]

The introduction of parallel servers changes this relation-
ship. Consider a different realization of the same job but in a
system with 3 servers as illustrated in Fig. 6b. Since the time
spent processing operations can overlap, the inter-completion
times of operations is the difference between the time the
next operation finishes on any server and the previous time an
operation finished on any server (the notation, however, stays
the same, ∆C). The schedule of operations in the multiserver
scenario is no longer the sum of the individual operation
processing times, but the maximum time taken to process
all the operations in the job. The average operation and job
throughputs, though, stay the same as in equations (3) and (4),
while the average job delay becomes:

average job delay = E [max (C1, C2, C3)]

= E [C3]

which is not linearly related to capacity.
For jobs with batch arrivals of multiple operations, the

average throughput will be equal to

lim
t→∞

m (t)

t
=

1

E [∆C]× avg. no. operations in a job

where ∆C is the time difference between the completion
times of subsequent operations, and we must multiply by the
additional scaling factor of the average number of operations
in a job.

An important distinction should be made between the av-
erage throughput of a system and the capacity of a system.
Average throughput can be found by counting the number of
jobs that are completed in a fixed window of time (0, t] and
dividing by t, as long as t is sufficiently large. The capacity

of a system is the maximum average throughput of a system,
i.e.:

µ̂ = lim sup
t→∞

m (t)

t

Average system throughput is then always a proportion of the
system capacity and can be written down as

lim
t→∞

m (t)

t
= ρµ̂

where ρ is a utilization or loading factor. Under queuing
assumptions, the system capacity is simply the maximum
average arrival rate before the queue becomes unstable and
is equal to the aggregate average servicing rate of the servers,

µ̂ =
∑
i

µi

the average throughput, instead, is the carried traffic and
is equal to the offered traffic, λ, as long as the queue is
stable (λ < µ̂). When the average arrival rate is higher than
the capacity, the average throughput is simply equal to the
capacity. Since different scheduling policies can have different
capacities, varying the scheduling policy will not vary the
average throughput as long as the arrival rate remains below
the capacity so that there is no throughput “clipping”.

C. Gang Scheduling and the Processor Sharing Bound

Processor sharing is an old technique that when applied to
single server queues has the effect of reducing the squared
coefficient of variation in the expected delays of arriving jobs
with long-tailed service time distributions. For single server
queues with Poisson arrivals, the expected delay and waiting
times for systems employing a processor-sharing queuing
discipline are given by [11, Ch. 4]:

E [D] =
E [S]

1− ρ

E [W] =
ρE [S]

1− ρ
= E

[
WM/M/1

]
where E [S] is the average job service time, ρ is the system
utilization or loading, and E

[
WM/M/1

]
is the expected wait

time of an equivalent M/M/1 server with service rate 1/E [S]
and arrival rate λ.

By first dividing the available processing time for each
parallel server into a series of time slices that can be shared
among jobs and then applying synchronization to ensure that
parallel tasks belonging to the same job will always run in the
same time slices, the multiserver system can be modeled as if
it were a single server system. This synchronized scheduling
policy for parallel processing is sometimes referred to as
gang scheduling [42], and it enables the system to be studied
as if it were an M/G/1 queue equipped with a processor-
sharing queuing discipline. While the strict synchronization
requirements of this model means that some time slices are
wasted when jobs are composed of heterogeneously sized
operations, it has the advantage of being easy to analyze
which means we can use the performance of this system

s1

time
C1 C2 C3

o1 completed o2 completed o3 completed

t1 t2 t3

t1 t2 − t1 t3 − t2

(a) Single Server Schedule

s1

s2

s3

time
C1 C2 C3

o1 completed

t3
o2 completed

t2
o3 completed

t1

t1 t2 − t1 t3 − t2

Legend:
o3 , o2 , o1

(b) Multi-Server Schedule

Fig. 6. Schedule of a Single Job with 3 Operations.

as a common reference point when comparing alternative
scheduling policies. This is the foundation for our final job
scheduling principle.

Principle 3 (Gang Scheduling and the Processor Sharing
Bound).
By synchronizing operations and applying a gang scheduling
policy across all k servers in a warehouse-scale computer, the
expected delay will be equal to:

E [D] =
E [S]

1− ρ
(5)

where E [S] is the expected service time of jobs, and ρ is the
system utilization or loading.

Since gang scheduling is a practically achievable de-
sign [42], equation (5) can be used as a worst-case expected
delay bound for new designs.

V. CONCLUDING DISCUSSION

Our objective in developing this warehouse-scale computer
model and corresponding job scheduling principles is to sup-
port the design, development, and improvement of scheduling
and other resource management algorithms for warehouse
scale systems and applications, including data processing
frameworks like MapReduce [4], Spark [5], and Dryad [6].
To accommodate both future new ideas and the diversity
of existing ideas, our model must be highly flexible. To
achieve this, our model is designed using “abstract interface”
style components which define warehouse-scale computing
in terms of a minimum set of requirements that must be
satisfied to process data. Scheduling and resource management
algorithms are then defined in terms of how they act on the
flow of data at each of the six interfaces in the model. The
strict unidirectional (non-reversible) flow of data through a
warehouse-scale computer means that there can never be any
ambiguity in terms of what is meant by an algorithm that acts
on interfaces (2) and (3). Eliminating ambiguity in the job
scheduling research literature makes it feasible for researchers

and designers to compare differing designs and architectures
on a like-for-like basis, as well as determine whether specific
algorithms may be mutually exclusive in terms of how they
act on the data flow pathway.

The strict unidirectional flow of data in a warehouse-scale
computer does not interfere with the operation of repetition
or speculation-based approaches, like Dolly [31], as the in-
finite memory of the job inbox allows data to be copied
from the inbox and assigned to the server set multiple times
for processing. Interfaces (3) and (4), and the input/output
relationship between data in the job outbox, and data in the job
inbox, also provide opportunities for dynamic feedback-based
control algorithms without violating the strict unidirectional
flow of data through the system. To facilitate the comparison
of different scheduling algorithms on a like-for-like basis,
we have defined job latency, and job schedules, as a metric
that can be emitted by the controller on interface (6). Future
extensions to this abstract model may wish to define new
metrics that can be used for comparing differing resource
management approaches.

The warehouse-scale job scheduling principles we have
presented are not an exhaustive list of design principles,
rather, they form the beginnings of a much larger piece of
work in attempting to enumerate provable principles of system
and application design at scale. Given the generally NP-Hard
nature of the warehouse-scale job scheduling problem, it is
likely that job scheduling design principles will be discovered
first by experimentation and practice, and confirmed later by
mathematical and logical arguments. As such, we argue that
the sensible place to begin a systematic search for design prin-
ciples is in the design justifications of existing schedulers.

REFERENCES

[1] O. Agmon Ben-Yehuda, M. Ben-Yehuda, A. Schuster, and D. Tsafrir,
“The rise of RaaS: the resource-as-a-service cloud,” Commun. ACM,
vol. 57, no. 7, p. 76–84, jul 2014.

[2] L. Sustar, R. Kwon, and H. Joshi, “The public cloud market outlook,
2022 to 2026,” Forrester, Tech. Rep., 2022. [Online]. Available:

https://www.forrester.com/report/the-public-cloud-market-outlook-202
2-to-2026/RES178311

[3] L. A. Barroso, U. Hölzle, and P. Ranganathan, The Datacenter as a Com-
puter: Designing Warehouse-Scale Machines, ser. Synthesis Lectures on
Computer Architecture. Cham: Springer International Publishing, 2019.

[4] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, p. 107–113, jan 2008.

[5] M. Zaharia, M. Chowdhury, T. Das et al., “Resilient distributed datasets:
a fault-tolerant abstraction for in-memory cluster computing,” in Pro-
ceedings of the 9th USENIX Conference on Networked Systems Design
and Implementation, ser. NSDI’12. USA: USENIX Association, 2012,
p. 2.

[6] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly, “Dryad:
distributed data-parallel programs from sequential building blocks,”
SIGOPS Oper. Syst. Rev., vol. 41, no. 3, p. 59–72, mar 2007.

[7] Álvaro. López Garcı́a, J. M. De Lucas, M. Antonacci et al., “A cloud-
based framework for machine learning workloads and applications,”
IEEE Access, vol. 8, pp. 18 681–18 692, 2020.

[8] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Sparrow: dis-
tributed, low latency scheduling,” in Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, ser. SOSP ’13. New
York, NY, USA: Association for Computing Machinery, 2013, p. 69–84.

[9] M. Zukerman, “Introduction to Queueing Theory and Stochastic
Teletraffic Models,” Jun. 2023, arXiv:1307.2968 [cs, math]. [Online].
Available: http://arxiv.org/abs/1307.2968

[10] D. Gross and C. M. Harris, Fundamentals of queueing theory, 3rd ed.
New York: Wiley, 1998, edition: 3rd ed. Publisher: Wiley.

[11] L. Kleinrock, Queuing Systems Volume II: Computer Applications.
USA: John Wiley and Sons, 1976, vol. 2.

[12] P. Johnson. (2017) With the public clouds of amazon, microsoft and
google, big data is the proverbial big deal. Accessed June 28’th, 2024.
[Online]. Available: https://www.forbes.com/sites/johnsonpierr/2017/06/
15/with-the-public-clouds-of-amazon-microsoft-and-google-big-data-i
s-the-proverbial-big-deal/

[13] J. Dean and L. A. Barroso, “The tail at scale,” Commun. ACM, vol. 56,
no. 2, p. 74–80, Feb 2013.

[14] P. Garraghan, X. Ouyang, R. Yang, D. McKee, and J. Xu, “Straggler
root-cause and impact analysis for massive-scale virtualized cloud
datacenters,” IEEE Transactions on Services Computing, vol. 12, no. 1,
pp. 91–104, Jan 2019.

[15] Redis. Accessed April 30, 2024. [Online]. Available: https://redis.io/
[16] J. L. Hennessy and D. A. Patterson, Computer Architecture - A Quan-

titative Approach, 5th ed. Elsevier, 2012.
[17] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-

berg, “Quincy: fair scheduling for distributed computing clusters,”
in Proceedings of the ACM SIGOPS 22nd Symposium on Operating
Systems Principles, ser. SOSP ’09. New York, NY, USA: Association
for Computing Machinery, 2009, p. 261–276.

[18] Y. Zhao, C. Tian, J. Fan, T. Guan, X. Zhang, and C. Qiao, “Joint reducer
placement and coflow bandwidth scheduling for computing clusters,”
IEEE/ACM Trans. Netw., vol. 29, no. 1, pp. 438–451, Feb 2021.

[19] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding up distributed machine learning using codes,” IEEE Trans.
Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

[20] K. Exton. Stochastic scheduling simulation. Accessed April 02, 2024.
[Online]. Available: https://github.com/kcexn/simulation

[21] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel, “Hawk:
hybrid datacenter scheduling,” in Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference, ser. USENIX ATC
’15. USA: USENIX Association, 2015, p. 499–510.

[22] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel, “Job-aware
scheduling in eagle: Divide and stick to your probes,” in Proceedings
of the Seventh ACM Symposium on Cloud Computing, ser. SoCC ’16.
New York, NY, USA: Association for Computing Machinery, 2016, p.
497–509.

[23] X. Ren, G. Ananthanarayanan, A. Wierman, and M. Yu, “Hopper:
Decentralized speculation-aware cluster scheduling at scale,” in Pro-

ceedings of the 2015 ACM Conference on Special Interest Group on
Data Communication, ser. SIGCOMM ’15. New York, NY, USA:
Association for Computing Machinery, 2015, p. 379–392.

[24] S. Li, M. A. Maddah-Ali, Q. Yu, and A. S. Avestimehr, “A funda-
mental tradeoff between computation and communication in distributed
computing,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 109–128, Jan.
2018.

[25] M. Chowdhury and I. Stoica, “Coflow: a networking abstraction for
cluster applications,” in Proceedings of the 11th ACM Workshop on Hot
Topics in Networks, ser. HotNets-XI. New York, NY, USA: Association
for Computing Machinery, 2012, p. 31–36.

[26] K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, and E. Hyytia,
“Reducing Latency via Redundant Requests: Exact Analysis,” in Pro-
ceedings of the 2015 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, ser. SIGMETRICS
’15. New York, NY, USA: Association for Computing Machinery, Jun.
2015, pp. 347–360.

[27] S. Dauzère-Pérès, J. Ding, L. Shen, and K. Tamssaouet, “The flexible job
shop scheduling problem: A review,” European Journal of Operational
Research, vol. 314, no. 2, pp. 409–432, 2024.

[28] F. Baccelli, A. M. Makowski, and A. Shwartz, “The fork-join queue and
related systems with synchronization constraints: stochastic ordering and
computable bounds,” Advances in Applied Probability, vol. 21, no. 3,
pp. 629–660, Sep. 1989.

[29] E. Boutin, J. Ekanayake, W. Lin et al., “Apollo: scalable and coordinated
scheduling for cloud-scale computing,” in Proceedings of the 11th
USENIX Conference on Operating Systems Design and Implementation,
ser. OSDI’14. USA: USENIX Association, 2014, p. 285–300.

[30] Y. Chen, S. Alspaugh, and R. Katz, “Interactive analytical processing
in big data systems: a cross-industry study of mapreduce workloads,”
Proc. VLDB Endow., vol. 5, no. 12, p. 1802–1813, aug 2012.

[31] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, “Effective
straggler mitigation: Attack of the clones,” in Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation,
ser. nsdi’13. USA: USENIX Association, 2013, p. 185–198.

[32] E. Totoni, S. R. Dulloor, and A. Roy, “A Case Against Tiny Tasks
in Iterative Analytics,” in Proceedings of the 16th Workshop on Hot
Topics in Operating Systems, ser. HotOS ’17. New York, NY, USA:
Association for Computing Machinery, May 2017, pp. 144–149.

[33] I. Gertsbakh, Reliability Theory. Berlin, Heidelberg: Springer, 2005.
[34] J. Y.-T. Leung, Ed., Handbook of Scheduling: Algorithms, Models, and

Performance Analysis. New York: Chapman and Hall/CRC, Apr. 2004.
[35] D. R. Cox, Renewal theory, ser. Monographs on statistics and applied

probability. London: Chapman and Hall, 1967, publisher: Chapman
and Hall.

[36] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow scheduling
with varys,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 4, p.
443–454, aug 2014.

[37] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proceedings of the 11th ACM Symposium on
Cloud Computing, ser. SoCC ’20. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1–15.

[38] Streams. Apache Software Foundation. Accessed August 9, 2024.
[Online]. Available: https://storm.apache.org/releases/2.6.3/Tutorial.html

[39] J. Xu, J. Wang, Q. Qi, H. Sun, J. Liao, and D. Yang, “Effective Scheduler
for Distributed DNN Training Based on MapReduce and GPU Cluster,”
Journal of Grid Computing, vol. 19, no. 1, p. 8, Feb. 2021.

[40] M. Shaked and J. G. Shanthikumar, Eds., Stochastic Orders, ser. Springer
Series in Statistics. New York, NY: Springer, 2007.

[41] B. Ibryam. Fine-tune Kafka performance with the Kafka optimization
theorem. Accessed April 1, 2024. [Online]. Available: https:
//developers.redhat.com/articles/2022/05/03/fine-tune-kafka-performan
ce-kafka-optimization-theorem

[42] M. Jette, “Performance characteristics of gang scheduling in multipro-
grammed environments,” in SC ’97: Proceedings of the 1997 ACM/IEEE
Conference on Supercomputing, Nov 1997.

