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Abstract—Large-scale parallelizable data processing jobs, exe-
cuted by frameworks like Spark, frequently have heavily skewed
response time distributions with long tail times. This phenomenon
is known as straggling and it occurs when one or more of the
parallel tasks belonging to a job takes much longer than normal
to complete. As a single root cause for straggling in large-scale
systems is difficult to identify, we consider it to be a symptom
of temporary node impairment caused by random bursts of
interference. Since latin squares are commonly used in many
applications that need to mitigate external sources of variation
or interference, we examine how they might benefit modern
distributed data processing workloads. Based on the latin square
combinatorial block design, we develop a scheduling policy that
we call the latin square scheduling policy. Using a combination
of simulation and theoretical analysis, we argue that our policy
can outperform other common schemes such as random, round-
robin, Sparrow, and Peacock, when there is a sufficient quantity
of time-dependent intermittent burst interference.

I. INTRODUCTION

Data processing is an integral part of modern computing
services like search, language translation, and image recog-
nition. These services are often constructed using a complex
web of highly interconnected components that are hosted on
extremely large-scale computers, sometimes called warehouse-
scale computers [1]. Scheduling parallelizable data processing
jobs on these warehouse-scale machines, especially using
frameworks like MapReduce [2], is plagued by a phenomenon
known as “straggling” that is characterized by heavily skewed
end-to-end job delay (or response) time distributions [3]. As
response times are necessarily non-negative values, shorter
schedules can be produced by eliminating extraneous sources
of variation. We consider schedules to be shorter when the
job response time distribution has smaller delays at all of the
quantiles. This fact is plain to see if we break down the delay
time, T , of a job into three components:

T = τ + Z + ξ (1)

where τ is a non-negative constant that denotes the minimum
possible delay time for a job, Z is a non-negative random
variable determined by the variation in computational inputs,
and ξ is a non-negative random variable that is contributed
by extraneous sources of variation (Z and ξ not necessarily
independent).

Extraneous sources of variation can have various root
causes, for large (warehouse) scale computers, Dean and
Barroso [3] identify some of these to be: global resource
sharing, maintenance activities, power limits, garbage collec-
tion, and dynamic energy management. In general, we can
interpret the aggregate variation from all these sources as
being a form of burst interference that is spread out over
the dimensions of time and compute resources (disk, network,
CPU etc.). Using an array of binary variables, xi (t), where
each variable is equal to 1 when the i’th compute resource
is experiencing burst interference at time t and 0 otherwise,
we can represent this burst interference using a collection of
parallel timelines, as in Fig. 1. Whenever xi (t) is equal to
1, we say that the processing capabilities of the i’th compute
resource are degraded. Degraded resources can still execute
the tasks that they have been assigned, but they will do so at
a lower performance level (with respect to a given performance
measurement) compared to an undegraded resource. Thus,
eliminating extraneous sources of variation means that we need
to limit, but not eradicate, the amount of computational work
that is being performed by degraded resources at any given
point in time.

By dividing the resource timelines into time slots. We can
group instances of burst interference into elements of a two-
dimensional array (or blocks in a two-dimensional grid), where
each element of the array, xi,j , is equal to 1 if its associated
time slot contains an instance of burst interference and 0
otherwise, as in Table I. We argue that it is reasonable to
assume that burst interference is a random event, since if
it were a deterministic event, systems would be designed in
such a way that these events could not cause any interference.
Under the assumption of random burst interference, the two-
dimensional array of xi,j’s indicates to us that the process-
ing capabilities of a computer will vary randomly between
blocks but may be more consistent within each block. When
variations within a block are smaller than variations between
blocks, then these sources of variance are sometimes called
blocking factors (especially in the design of experiments [4,
Ch. 1]), and the techniques that are used to reduce the influence
of blocking factors are called block designs [4, Ch. 10].
Although our job scheduling problem is different from that
of the design of experiments, we will be investigating job



TABLE I
ARRAY REPRESENTATION OF BURST INTERFERENCE BLOCKS

Time Slot 0 1 2 3

x1 0 1 1 1
x2 0 0 1 0
x3 0 1 0 0

scheduling algorithms based on these combinatorial block
designs, especially, that of latin square block designs [4,
Ch. 12].

A. Key Contributions

In section IV we develop the design of a scheduling policy
based on latin square combinatorial block designs. Here, we
provide a formal listing of a scheduling algorithm as well as
some discussion on the benefits of our latin square scheduling
policy relative to other schedulers in the literature. Subse-
quently, we will move to the analysis of a small-scale system
where we will demonstrate that under Poisson arrival and
mutually independent exponential service time assumptions,
our latin square scheduling algorithm can provide as much as
a 50% reduction to expected response times relative to a simple
round-robin scheme. In section VI, we design a simulation ex-
periment to compare our latin square scheduling policy against
four other policies: round-robin1, random2, Sparrow [6], and
Peacock [7]. We have chosen these as our reference points
to compare against, as they are well-understood designs. In
particular, Sparrow [6] has been used as a reference point
in many subsequent designs [7]–[10], and Peacock [7] is a
contemporary solution that has been demonstrated to reduce
job latencies by as much as 73% relative to Eagle [10] and
as much as 91% relative to Sparrow [6]. Our simulations
first reproduce the results originally presented by Sparrow [6]
and Peacock [7]; subsequently, we compare the job schedules
produced by these and our latin square scheduling policy,
both with and without the effects of burst interference. Our
results demonstrate that our latin square scheduling policy
produces extremely consistent schedules under a wide range
of operating conditions, and therefore produces much shorter
schedules than the other policies we evaluated when the
frequency of burst interference is unknown, or varies over
time.

II. BACKGROUND AND RELATED WORK

The end-to-end job delay time skew introduced by “strag-
gling” has been a high-profile research problem since at least
as early as 2008 with the publication of MapReduce [2]. Early
solutions attribute this skew to errors within the computer
such as dropped packets or server failures, funneling the
focus towards task retrying strategies as implemented by
MapReduce [2]. Later, repetition or replication strategies were
implemented by schedulers to reduce skew by preemptively

1Round-robin assigns each subsequent task to the next server in a rotating
list of servers.

2Random scheduling is equivalent to a power-of-k [5] scheme with k = 1.

Time
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Fig. 1. Burst Interference Spread over 3 Compute Resources

eliminating straggling tasks [11]. The repetition strategy is
also referred to as speculative execution [8], and has seen a
lot of adoption in the literature [11]–[13]. Recently, there has
been a revival of interest in the topic of skew and straggler
mitigation in the information theory community that has de-
veloped around the application of combinatorial and algebraic
structures similar to traditional error-correcting codes [14].
In particular, there has been much work around reducing
the end-to-end delay times of machine learning related jobs
that rely heavily on distributed matrix arithmetic [15], [16].
While these algorithms seem to be effective, they are limited
in their application to numerical and scientific computational
workloads. While some combinatorial approaches have been
studied [17], the scope of this other work remains quite
focused on applications in machine learning. We argue that
some of these coded distributed computing algorithms have job
scheduling applications outside of strictly machine learning
workloads.

The foundations of the bridge that we build between coded
distributed computing algorithms and traditional job schedul-
ing for warehouse scale computers will be laid on top of
the latin square combinatorial block design. Latin squares
have a rich history of being used to mitigate or manage
unwanted sources of variation, or interference, in a variety
of disciplines. Of particular note, is how they were used
in wireless communications for the development of code-
division multiple access schemes [18], and how they are used
in the design of experiments to mitigate unwanted sources of
variation called blocking factors [4, Ch. 1].

As they are combinatorial block designs, we argue that latin
squares will be useful for far more general workloads than
simply jobs consisting of distributed matrix arithmetic. We
demonstrate that they are competitive against well-established
approaches in the applied job scheduling literature, like Spar-
row [6] and Peacock [7], especially, under the assumption of
uncorrelated service time characteristics caused by random
bursts of performance degrading interference.

III. THE WAREHOUSE-SCALE COMPUTER — SYSTEM
MODEL

The model we use of a warehouse-scale computer is made of
four components and six interfaces, illustrated in Fig. 2. The
four components of a computer represent logical groupings
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Fig. 2. A Warehouse-Scale Computer with M Parallel Servers.

of the resources necessary for executing applications on a
warehouse-scale machine. The inbox (connected to interfaces
(1) and (2)) and outbox (connected to interface (5)) com-
ponents store input and output data for applications that
are installed on the computer. The server set (connected to
interfaces (3) and (4)) is a set of M parallel servers that rep-
resents the total amount of compute resources (disk, memory,
CPU, etc.) available to the controller for executing application
instructions. The controller (connected to all interfaces) is
responsible for ensuring the unidirectional flow of data through
the system over interfaces (1)-to-(5) and emitting relevant
performance measurements over interface (6). The input to
the computer is a sequence of jobs, J = {j1, . . .}, where
each job ji ∈ J consists of ni ∈ N operations (tasks) that
must be executed by the computer to complete or “clear”
the job. Upon arrival, a job is moved by the controller to
the job inbox on interface (1) to be scheduled for execution.
On interface (2), the controller then decides how to sequence
the tasks in the inbox for scheduling. On interface (3), the
controller assigns server resources (using any algorithm that
does not violate the strict unidirectional flow of data from (1)-
to-(5)) to tasks in the order of arrival from interface (2). On
interface (4) the controller collects the task outputs from the
parallel servers in the machine. On interface (5) the controller
sends task output data to the job outbox, a job is completed
or “cleared” when every task associated to the job has an
output in the outbox. Finally, on interface (6), the controller
emits performance measurements relevant to the control plane
actions taken on interfaces (1)-to-(5). We have implemented
a simulation of our warehouse-scale computing model that is
available from [19].

IV. THE LATIN SQUARE SCHEDULING POLICY

For any v ∈ N, a latin square is a v × v array filled
with v distinct items such that every item appears in every
row and every column exactly once. Thus, each distinct item
will appear in the array a total of v times. Our policy treats
each row of the latin square as a sequencing of tasks that is
associated to a parallel server, i.e., the m’th parallel server is
assigned tasks to be executed in an order determined by the
m’th row of the latin square. The policy guarantees that, for a
square with v tasks, v parallel servers will always be working
on the tasks in the first column of the square. Initially, the

1: procedure MAKELATINSQUARE(job)
2: square← []
3: for i← 0 . . . v − 1 do
4: row← []
5: for j ← 0 . . . v − 1 do
6: task← job[ (j + i) mod v]
7: APPEND(row, task)
8: end for
9: APPEND(square,row)

10: end for
11: return square
12: end procedure

▷ main scheduling loop
13: procedure SCHEDULE(servers, job)
14: square← MAKELATINSQUARE(job)
15: nremaining← v
16: for i← 0 . . . v − 1 do
17: row← square[i]
18: ASSIGNTASK(servers[i], row[0])
19: end for
20: repeat

▷ wait for a finished task to be emitted on interface (4).
21: task← AWAIT((4))
22: nremaining← nremaining− 1
23: for row in square do
24: REMOVE(row, task)
25: end for
26: for i← 0 . . . v − 1 do
27: row← square[i]
28: if nremaining > 0 then
29: UPDATETASK(servers[i], row[0])
30: else
31: UPDATETASK(servers[i], null)
32: end if
33: end for
34: until nremaining = 0
35: end procedure

Fig. 3. Latin Square Scheduling Algorithm

policy assigns the task in the first column of each row to
its corresponding server and then waits for a task to finish
executing. Upon receiving an output emitted on interface (4),
for the current task assigned to the m’th server, the controller
will remove all v copies of that task from the latin square
leaving a v× (v− 1) rectangle that represents the sequencing
of the v − 1 unfinished tasks on v parallel servers. Finally,
to guarantee that the v servers are only working on tasks
in the first column of the updated array, the controller will
stop (preempt) any servers that are no longer working on the
correct task and start them working on the next task in the
sequence from the updated array. A formal description of our
latin square scheduling policy is given in Fig. 3. Consider a
job, ji, with 3 parallelizable tasks (e.g., a fork-join job with
3 parallel branches), that is scheduled on 3 available parallel
servers, s1, s2, s3, such that the first three rows of Table II
depicts the initial 3× 3 latin square schedule of tasks (line 16



TABLE II
LATIN SQUARE SCHEDULE FOR JOB WITH 3 PARALLEL TASKS.

Index 0 1 2

Initial Schedule
s1 ji,1 ji,2 ji,3
s2 ji,2 ji,3 ji,1
s3 ji,3 ji,1 ji,2

ji,1 completes on s1

s1 ji,2 ji,3
s2 ji,2 ji,3
s3 ji,3 ji,2

ji,2 completes on s2

s1 ji,3
s2 ji,3
s3 ji,3

ji,3 completes on s3

s1
s2
s3

of Fig. 3). The subsequent rows in Table II list the sequence
of task assignment rectangles that our policy would generate
(lines 20 to 34 of Fig. 3) from an example sequence of task
completions given by: ji,1 completes on s1, then ji,2 completes
on s2, then ji,3 completes on s3.

A. Latin Square Block Design Benefits

There is a great deal of empirical evidence to suggest that
redundant or speculative execution schemes can be effective
at scale [8], [11]–[13]. Under random burst interference as-
sumptions, the redundancy introduced by these speculative
execution schemes increases the probability that tasks will run
in time slices that are experiencing fewer and less severe bursts
of interference. Unfortunately, without a preemption mecha-
nism, speculatively scheduled tasks will continue to consume
compute resources long after they are needed. Hence, these
speculative execution schemes are better suited for scheduling
jobs consisting of small tasks, on account of the lower degree
of wasted system capacity.

Our first improvement on these pre-existing speculation
strategies comes from the inclusion of preemption. Preemption
is a technique that in other contexts would be dismissed due to
the resource consumption overhead [20]. However, speculative
execution schemes are already consuming additional resources
by launching redundant task copies. Therefore, preemption
becomes a technique that reduces the total commitment of
resources that speculative execution requires. In fact, under
mutually independent exponential service time and Poisson
arrival assumptions, the analysis by Gardner et. al. [21]
demonstrates that speculation with preemption comes at no
cost to system capacity, and therefore resource consumption.

Our second improvement on pre-existing speculation strate-
gies comes from rearranging the order of execution to ensure
that the sequences of redundant tasks assigned to each parallel
server are orthogonal (every task appears in every column and
every row only once). By staggering the launch of redundant
tasks over time (and parallel servers), we increase the like-
lihood that speculation will reduce end-to-end job delays by
widening the circumstances under which speculation might be
effective. Specifically, while traditional speculative execution
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Fig. 4. Expected Job Delay for System with 2 Servers.

techniques will reduce end-to-end delays for workloads that
have service time distributions with either constant or de-
creasing hazard rate functions (e.g., exponential and hyper-
exponential distributions). Latin square speculation will, in
addition to these, also be effective for workloads that have
service time distributions with an upside-down bathtub-shaped
hazard rate function3.

V. SMALL SCALE PERFORMANCE ANALYSIS

To estimate the performance improvement that our latin
square scheduling policy provides, we conduct a mathematical
analysis of a much smaller scale system with M = 2
parallel servers. We argue that the implicit assumptions in our
analysis of negligible task assignment and preemption delays
are reasonable at small scales as it is likely that any limitations
of networked communications can be mitigated under these
conditions. Hence, the magnitude of the relative improvement
to system performance at small scales offers an insight into
the performance of larger scale systems that are constructed
from the parallel arrangement of many small-scale modules.

For the remainder of this section, we assume the following
system parameterization:

• That our system is composed of M = 2 parallel servers.
• That task processing delays on both servers have mutually

independent exponentially distributed service times with
identical average service rate: µ = 1.

• That all arriving jobs consist of v = 2 parallelizable tasks,
and that jobs arrive according to a Poisson process with
rate λ.

Under these assumptions, Fig. 4 illustrates expected job delay
time vs arrival rate for a gang scheduling scheme [23], a round-
robin scheme, and our latin square scheduling policy. From
Fig. 4 we can quickly draw the conclusion that our latin square

3The hazard rate function of a distribution is the p.d.f. divided by the
survival function: h (x) =

f(x)
1−F (x)

. An upside-down bathtub-shaped function
is one where h (x) first increases, then decreases, e.g., [22]



TABLE III
TASK SERVICE TIME PARAMETERIZATIONS

Jobs

Servers Correlated Processing/Homogeneous Tasks Correlated Processing/Heterogeneous Tasks
Uncorrelated Processing/Homogeneous Tasks Uncorrelated Processing/Heterogeneous Tasks

scheduling policy significantly outperforms both a round-robin
and a gang scheduling scheme. Compared to round-robin we
can expect a relative reduction in expected job delays by up
to 50%. We outline the analysis used to generate Fig. 4.

A. Gang Scheduling

Gang scheduling is a time-sharing based scheduling pol-
icy [23]. The parallel resources in a gang scheduling scheme
are divided into a series of time slices that are time-shared
among the running jobs. The time slices in a gang scheduling
scheme are synchronized so that the parallel tasks of a job
are always running simultaneously. By synchronizing parallel
task execution to common time intervals, gang scheduling
performance approximates a single server system that is using
a processor sharing queuing discipline. We can estimate the
expected delay of the gang scheduling policy by using the
well-established expected delay formula for processor sharing
queues [24, Ch. 4]:

E [D] =
E [S]

1− ρ

where E [S] is the expected service time (the delay time as
ρ → 0+) of the workload, and ρ is the system utilization.
Given that our servers have mutually independent exponen-
tially distributed task service times, we can evaluate the ex-
pected service time of a job quickly by applying the expected
value formula for the maximum of two i.i.d. exponential
random variables [25].

E [S] =
H2

µ
= 1.5

where H2 =
2∑

i=1

1
i is the second harmonic number, and µ = 1.

Hence, by applying gang scheduling, the expected job delay
time becomes:

E [D] =
E [S]

1− ρ

=
1.5

1− λ
1.5

B. Round-Robin

Under our assumptions, a round-robin scheduled system has
two parallel queues Q1, Q2 with a common Poisson arrival
process of rate λ but i.i.d. exponentially distributed servicing
processes with mean 1. The end-to-end delay of tasks routed
to server 1 and 2 will be denoted D1, and D2 respectively.
Therefore, the end-to-end delay of a job will be:

D = max (D1, D2)

Separately, D1 and D2 are both exponentially distributed with
mean 1

µ−λ , however, the common Poisson arrival process
means that D1 and D2 are not independent random variables,
so we can not simply apply the formula for the maximum
of two i.i.d. exponential random variables as we did for gang
scheduling. Instead, by applying Baccelli’s [26] approximation
using associated random variables, we can use the expected
value of the maximum of two i.i.d. exponential random
variables with mean 1

µ−λ as an upper bound on the expected
job delay time. Now we can apply the same formula as in the
gang scheduling case to find the following upper bound for
the expected job delay time for round-robin scheduling:

E [D] = E [max (D1, D2)] ≤
1.5

1− λ

In Fig. 4, we have used a simulation to demonstrate that under
our small-scale system assumptions, this upper bound is quite
a good approximation of the actual expected job delay times.

C. Latin Square

Under these small-scale system assumptions of v = M = 2,
our latin square scheduling policy guarantees that job service
times will be:

S =

2∑
i=1

Xi

2

where the Xi are i.i.d. exponential random variables with
mean 1. Therefore, the job service times will be distributed
according to a gamma distribution with shape, α = 2, and
rate, β = 2. Since we have assumed that v = M = 2, the
latin square redundant execution structure also ensures that
all jobs waiting in the queue will be blocked until the job
at the head of the queue has finished being serviced. This
means that we can evaluate the expected delay of our latin
square scheduling policy by applying the Pollaczek-Khinchine
formula [27, Ch. 16]:

E [D] =
ρ+ λµσ2

2 (µ− λ)
+

1

µ

=
1.5λ

2 (1− λ)
+ 1

VI. SIMULATION DESIGN AND EVALUATION

We have implemented a simulation of the system model
illustrated in Fig. 2 (available from [19]). In addition to
the key components and interfaces, our simulation adds a
network delay process between the servers and the controller
so that all the communication delays in our system can be
parameterized and included into our policy evaluation. To
cover a number of different baseline reference points, we have



TABLE IV
SIMULATION PROCESS PARAMETERS, ν = 1 AND µ = 1.

Process Parameterization

Job Arrival Process num. tasks per job job interarrival times task interarrival times

100 Exponential
(

1
2
× µ

10−2

)
Constant (0).

Task Latency Process num. servers in the cluster

10 000

server task processing parameterization

correlated server processing uncorrelated server processing

homogeneous tasks All tasks within a job have iden-
tical processing times sampled
from an exponential distribution
with rate µ.

Task processing times are dis-
tributed i.i.d. according to an ex-
ponential distribution with rate µ.

heterogeneous tasks Task processing times are sam-
pled from an exponential distribu-
tion with rate µ. Distinct tasks are
sampled independently but copies
are identical to their originals.

Average task processing rate, ν,
is sampled i.i.d. from an expo-
nential distribution with rate µ.
Task processing times are then
sampled i.i.d. from an exponen-
tial distribution with rate ν.

Network Delay Process half round-trip delay time Gamma
(
α = 102, β = 104

)

compared our latin square policy to a random, a round-robin,
the Sparrow [6], and the Peacock [7] scheduling policies.
Random and round-robin policies were chosen as they are
very common cluster scheduling strategies, for instance, the
OpenWhisk [28] serverless framework uses a random policy to
assign function invocations to invokers; and, when configured
to use IP Virtual Server [29], Kubernetes [30] will, by default,
use a round-robin policy for layer 4 load balancing. We
chose Sparrow [6], though, because it has been used as a
common reference in many modern scheduler designs [8]–
[10], which makes it useful as a baseline for assessing the
relative improvement of our latin square policy against other
scheduling policies in the literature. Peacock [7] was chosen
because it is a contemporary design that has demonstrated
significant performance improvements relative to Sparrow [6]
and its successors: Hawk [9], and Eagle [10]. Table IV details
how the simulation has been parameterized. These parameters
have been chosen so that we can reproduce the results in the
original Sparrow article [6]; therefore, we can provide a like-
for-like comparison between our latin square and the Sparrow
scheduling policy.

A. Alternative to Trace Driven Simulation

It is common in the literature for authors to evaluate their
scheduling policies on simulated inputs that are taken from a
workload trace [7], [9], [10]. Common traces include those
taken by Google [31] and Facebook [32]. Since our latin
square scheduling policy is designed to modulate service times
rather than waiting times, we argue that traces like these
can not be used to evaluate our policy as service times in

these traces have already been realized, thus, preventing any
further changes and improvements that could still be made.
Furthermore, without detailed measurements taken for each
and every task in a given trace, it is impossible to determine
the task service time distribution in a way that accurately
captures the statistical characteristics of the original workload.
For instance, the approach of generating i.i.d. service times
from the empirical service time distribution of a trace is unable
to correctly simulate any time-based dependencies that may
exist both within and between jobs. The difference in expected
delay between the theoretical upper bound and the small-scale
simulation of round-robin scheduling given in section V makes
this phenomenon apparent. It also demonstrates that setting
random variables to be equal in distribution to their source is
insufficient for ensuring that a simulation will have the same
scheduling performance characteristics as that source.

To overcome this limitation, we have evaluated all the
scheduling policies in our experiment under four parameteriza-
tions that comprise the corner points of a quadrangle. We argue
that by appropriately mixing the performance characteristics at
each of these four points, the scheduling performance of any
workload on any system can be approximated. The four param-
eterizations we use are: task servicing is correlated between
servers and tasks are homogeneous within jobs, task servicing
is correlated between servers and tasks are heterogeneous
within jobs, task servicing is uncorrelated between servers and
tasks are heterogeneous within jobs, and task servicing is un-
correlated between servers and tasks are homogeneous within
jobs. We summarize these parameterizations in Table III.

Homogeneous tasks indicate that the service time of one
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Fig. 5. Change in Job Response Time Distribution vs Change in Processing Model.

task within a job is predictive of the service time of all other
tasks within a job, while heterogeneous tasks indicate that the
service time of one task within a job is not predictive of the
service time of other tasks within a job. To reproduce the
Sparrow [6] simulation experiments, our task service times
have been chosen according to an exponential distribution.

Under a homogeneous task parameterization, the service
time of a task will be randomly generated from an exponential
distribution with mean 1 for each job and assigned to every
task within the job (every task in a job has the same size) and is
how the simulation experiments were performed by Ousterhout
et. al. [6]. Under a heterogeneous task parameterization, every
task within a job will have an i.i.d. service time from an
exponential distribution with mean 1. Correlated task servicing
between servers indicates that the service time of a task on one
server is predictive of the service time of the same task on
a different server. Uncorrelated task servicing indicates that
the service time of a task on one server is not predictive
of the service time of the same task on a different server.
Uncorrelated servicing also indicates the presence of burst
interference that varies the task processing characteristics both

between parallel servers and over time. In our experiments, we
have implemented correlated servicing by setting the service
time of each distinct task to be equal on every server. We
have implemented uncorrelated servicing by setting the service
time of each distinct task to be equal to i.i.d. exponentially
distributed random variables with mean equal to the task
service time at every server.

B. Results

To ensure a like-for-like comparison with the simulation
results in [6], we have parameterized our latin square policy
to divide the 100 tasks in each job into 50 parallel branches
with 2 tasks in each branch and schedule them on 50 randomly
selected pairs of servers. This ensures that our policy has been
parameterized for an identical number of remote procedure
calls, an identical server selection algorithm, and an identical
number of replicated tasks or probes as in [6]. Additionally,
we ensure unit average task latencies by setting µ = 1 and
ν = 1. The simulated performance of Sparrow illustrated in
Fig. 5 is then the same as the simulated performance in [6]
rescaled by a unit of 100ms.
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Fig. 6. Change in Job Response Time Distribution vs Change in Policy.

To simulate the schedules for each of our policies, we
generate 20000 jobs to be scheduled on a cluster of 10000
parallel servers. The random job arrival times are all generated
from the same seed so that for each processing time model
the scheduling policies being compared process an identical
sequence of jobs with identical arrival time spacings (i.e., the
differences between schedules are caused by the choice of
scheduling policy). Fig. 6 compares each of the scheduling
policies we have evaluated against each other while varying
the job servicing characteristics between each of the four kinds
in Table III. This comparison illustrates that our latin square
scheduling policy produces significantly shorter schedules than
the other policies under uncorrelated servicing characteristics,
and therefore, in systems that are suffering from random burst
interference. We consider a schedule to be shorter when the
job response time distribution has shorter delays at all the
quantiles. The comparison also illustrates that under correlated
servicing characteristics, simple round-robin scheduling has
similar, if not better performance than much more sophisti-
cated strategies like Peacock and Sparrow, even for jobs with
highly heterogeneous task service times.

Fig. 5 illustrates how the performance of each scheduling
policy changes as the job service time characteristics change
between each of the four kinds in Table III. This chart
demonstrates that our latin square policy produces extremely
consistent and predictable schedules under a wide variety
of circumstances. Of particular interest, is the performance
variation of the Peacock scheduling policy, given in Fig. 5,
between heterogeneous workloads that are being serviced by
correlated (no burst interference) servers, and homogeneous
workloads that are being serviced by uncorrelated (burst inter-

ference) servers. The performance improvements demonstrated
by Peacock over Sparrow [7] were determined by trace-
driven simulations with data taken from Google [33] as its
input source. While driving a simulation with historical traces
guarantees that the service time characteristics will have the
right degree of task heterogeneity, simulations of this nature
will always be for the correlated servicing of tasks. As the
performance of Peacock is not symmetric between correlated
servicing of heterogeneous tasks and uncorrelated servicing of
homogeneous tasks, it indicates that Peacock should perform
better in trace-driven simulations than it might in practice.
Fig. 6 highlights that this difference may be large enough to
be the difference between Peacock performing better than the
state-of-the-art when implemented and deployed at scale, and
performing worse than the state-of-the-art when implemented
and deployed at scale.

VII. DISCUSSION

A. Throughput Invariance

Since we have ensured that our average task times are all
unit, the long-term average throughput of our system is the
same for all four of our scheduling policies even though there
is a significant amount of variance between job sizes, i.e., the
expected value of the number of jobs that have completed
by time t, denoted E [N (t)], is asymptotically the same for
all the policies we have evaluated. For instance, Table V
lists the total realized simulation time (the completion time
of the last job minus the starting time of the first job) for
all four scheduling policies being compared. While there is
some difference in total simulation time between each of the
servicing characteristics, there is less than a 5% maximum



TABLE V
TOTAL SIMULATION TIME — 20000 JOBS

Corr/Hom Corr/Het Uncorr/Het Uncorr/Hom

Latin Square 415 415 448 411
Sparrow 404 402 440 417

Round-Robin 406 415 460 415
Random 417 417 450 419
Peacock 417 413 458 415

difference between policies. This is because we know that
as long as the offered traffic, λ, is less than the aggregate
servicing capacity of the system, the carried traffic will be
equal to the offered traffic. Therefore, average throughput
will be kept identical by all scheduling policies that do not
degrade system capacity below the level of offered traffic. We
call scheduling policies that satisfy this condition throughput
invariant scheduling policies.

Throughput invariance is an important precondition to a
fair comparison between two different scheduling policies, as
comparing two policies under different throughput conditions
makes it difficult to distinguish between a difference in latency
introduced by a change in scheduling policy and a difference
in latency introduced by a change in job throughput or system
loading. As can be seen in Fig. 6 the difference between
schedules produced by different policies on simulated systems
with identical throughputs can be dramatically different, this
implies that there is not necessarily a trade-off between the
global end-to-end job latencies and average system throughput
as is the common tuning advice for queue-based systems like
Apache Kafka [34].

B. Considerations for Time-Varying Systems

Empirical workload traces taken by Google [31] and Face-
book [32] are unlikely to exhibit perfectly stationary time-
invariant characteristics. To begin with, most empirical work-
load traces are taken over long periods of time so that average
performance trends can be identified. Over such long intervals
of time, the warehouse-scale computers that these workloads
are executing on will likely undergo hardware upgrade cycles
that will both increase aggregate servicing capacity and reduce
average job latencies over time. Other time-based trends, in
particular, periodic trends like time-of-day based activities,
are also hidden when aggregated measurements are presented
using probability distributions. Periodic trends are particularly
problematic, as there is no way to distinguish the difference
between sinusoidal trend lines and uniformly distributed ran-
dom noise when examining the final distribution.

This inability to distinguish between what is a trend line
and what is random motion in empirical traces is what makes
it difficult to design and fit a random service time model for
our simulated evaluations. We argue that for most systems and
workloads, there will be a mixture of both deterministic and
random characteristics spread out over time. This means that
for some intervals of time, the frequency of node degradation
caused by burst interference may be very low, while in other
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intervals of time the burst interference frequency may be
much higher. Although the exact weighting and distribution
of this mixture of performance characteristics is unknown, we
can make assumptions to examine how different scheduling
policies may perform under differently weighted mixtures.
Fig. 7 illustrates the performance of the scheduling policies
we have evaluated under a simple uniform mixture of our
four task service time parameterizations. It is notable that
in addition to producing extremely consistent performance
over a wide variety of operating conditions, our latin square
scheduling policy also produces the shortest schedule under
these uniformly mixed time-varying conditions.

VIII. CONCLUSIONS AND FUTURE WORK

Most of the job scheduling literature we have examined
is focused on improving scheduling performance by reduc-
ing waiting times stochastically, or reducing service times
deterministically. For instance, the power-of-k load balanc-
ing [5] technique applied by Sparrow [6], or the combina-
torial optimization techniques applied by SARS [35]. Our
latin square scheduling policy is an example of a class of
scheduling algorithms that are focused on reducing service
times stochastically. Early examples of scheduling algorithms
that have attempted this mostly revolve around the application
of redundant or speculative execution. Examples include [8],
[11], and [12]. More recently, there has been an upwelling
of interest in applying much more sophisticated combinatorial
and algebraic techniques than simple redundancy to stochasti-
cally reduce the service times of machine learning and other
distributed matrix arithmetic-based workloads [15]–[17].

In designing our latin square scheduling policy, we argue
that these combinatorial and algebraic scheduling techniques
can have far broader use cases than simply machine learning
and distributed matrix arithmetic applications. Through a com-
bination of the small-scale analysis in section V and simulated
experiments in section VI, we demonstrate that, under suitably
unpredictable workloads, our latin square scheduling policy
can produce significantly shorter schedules than other common



schemes like the Peacock [7], Sparrow [6], round-robin, and
random scheduling policies. Our simulation results, in particu-
lar, highlight that the performance of our latin square schedul-
ing policy improves as parallel server processing capabilities
decorrelate (as they would under random burst interference
assumptions).

A. Future Work

The effect block designs have on job schedules under
uncorrelated servicing conditions is unlikely to be limited
to latin squares. Other approaches, like Youden designs [4,
Ch. 12], likely perform similarly. Additionally, as block de-
signs emphasize the modulation of service times rather than
waiting times, they can augment techniques that only modulate
waiting times, e.g., power-of-k based approaches like [6], [9],
[10]. Therefore, we can develop combination algorithms that
simultaneously exploit power-of-k and block designs to get
the best performance under both correlated and uncorrelated
conditions.
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