

Remote Outdoor Webcam Installation with
Temperature and Humidity Monitoring

Melbourne Linux Users Group

29 March 2021
By: Rick Miles

Specifications:

● Inexpensive SBC with small form factor and good wireless
capabilty.

● Open source software.
● Inexpensive UVC standard webcam.
● Ability to integrate environmental sensor(s).
● Easily accessed via lan by computers and android devices.
● Installation in a sealed, ventilated, insect proof enclosure.

Software Required:

● hawkeye, “a simple, robust, easy to use USB webcam
streaming web server which uses MJPEG as the video codec”.

● i2c-tools
● Bc
● imagemagick
● wiringPi
● bash and gcc
● Current installation uses a Raspberry Pi Zero W running 2021-

01-11-raspios-buster-armhf-lite.

Project Schematic

Example of remote webcam live stream
Live stream from weather station running hawkeye showing temperature, humidity and
time of data reading displayed in a Fancybox popup.

Fixing glass to enclosure viewport

The remote webcam will be
installed outdoors. In order to
prevent insects taking up
residence a piece of 1mm
picture frame glass is placed
over the webcam viewport
and flywire is placed over the
ventilation holes. Both are
fixed in place with 2 part
epoxy.

Note the power supply barrel
jack installed in the top right
side of the enclosure.

Connecting webcam to Raspberry Pi Zero W

The C270 circuit board was removed
from its enclosure and the usb cord was
cut off leaving 200mm still attached. The
cord was stripped leaving 4 wires which
were soldered to an Adafruit DIY Micro-B
USB Plug. Refer to the schematic for
correct wire colours.

Black out the webcam LED to prevent
reflection in webcams glass viewport.

Fixing webcam into enclosure

The webcam circuit board is fixed
onto a piece of perspex over an
opening large enough to allow for
ventilation. A screw was used
through an existing hole on one
end. The other end was clamped
in place with a piece of vero
board.

Spacers are used to hold the
perspex high enough so that the
camera’s lense does not come in
contact with the viewport glass .

Raspberry Pi Zero and HTU21 mounted in enclosure

The perspex plate is
secured to the enclosure
bosses with 3mm screws
and the Raspberry Pi Zero
and HTU21 have been
secured to their standoffs
with 3 mm screws

Holes in left and right side
of enclosure are for
M6X20mm stainless steel
mounting bolts.

View with back cover and wiring in place

Left to right on the inside of the enclosure
cover: the momentary pushbutton shutdown
switch with green 5mm LED mounted in a
black plastic bezel and the push button
latching on/of switch with red LED in plastic
bezel.

Wires to switches and LEDs were soldered.
Wires to pins were connected using soldered
female crimp pins wrapped in shrink wrap.

Resistors were soldered inline to wires and
wrapped in shrink wrap.

Setting up the HTU21 Sensor

The HTU21sensor will be accessed as an I2C device on the Industrial IO bus which
will simplify access to humidity and temperature readings.

The HTU21 breakout board is connected as shown on the schematic.

Enabling the HTU21 Sensor

Open /boot/config.txt. Uncomment the line ‘dtparam=i2c_arm=on’ and add the line
‘dtoverlay=i2c-sensor,htu21’.

Uncomment some or all of these to enable the optional
hardware interfaces
dtparam=i2c_arm=on
dtoverlay=i2c-sensor,htu21
dtparam=i2s=on
dtparam=spi=on

root@rpi5: echo 'i2c-dev' >> /etc/modules

Install i2c-tools and then add ‘i2c-dev’ to /etc/modules to load the i2c-dev module at
boot.

Confirm HTU21 Sensor is an IIO device

Upon reboot, use the command ‘i2cdetect -y 1 to check that the htu21 device has
been loaded as an Industrial IO (iio) device.

root@rpi5: i2cdetect -y 1
 0 1 2 3 4 5 6 7 8 9 a b c d e f
00: -- -- -- -- -- -- -- -- -- -- -- -- --
10: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
20: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
30: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
40: UU -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --
70: -- -- -- -- -- -- -- --

If the letters UU are displayed as above instead of the number 40 the HTU21 is set
up as an iio device and can be found on the iio bus

Get data from the HTU21 Sensor

root@rpi5: ls /sys/bus/iio/devices/iio\:device0
battery_low in_humidityrelative_input of_node sampling_frequency_available
dev in_temp_input power subsystem
heater_enable name sampling_frequency uevent

The HTU21 is the only iio device in this setup. It will present on the iio bus as device0.
The current temperature and humidity are provided in the files in_temp_input and
in_humidityrelative_input.

The command ‘cat’ will return the current temperature and humidity. The Industrial I/O
ABI requires that temperature and humidity values are to be returned on a scale of
1000. The temperature is 29.92 degrees celsius and the humidity is 38.10%

root@rpi5: cat /sys/bus/iio/devices/iio:device0/in_temp_input
29920

root@rproot@rpi5: cat
/sys/bus/iio/devices/iio:device0/in_humidityrelative_input
38100

Install and configure Hawkeye webcam server
● Hawkeye is a lightweight webcam server compared to mjpg-streamer. I did

not consider motion an option although with a motion sensor added to this
installation I could take pictures of any movement in the view range.

● If anyone needs more info on how to get Hawkeye running on a non-
systemd system contact me on the MLUG list.

● Hawkeye was developed by Igor Partola for personal use on a Raspberry Pi.
It is available at https://github.com/ipartola/hawkeye. The README.md
provides links to debs as well as source code. I have built and installed the
two debs hawkeye-dbgsym_0.7_armhf.deb and hawkeye_0.7_armhf.deb
from the source on the Raspberry Pi Zero W used in this project.

● For anyone interested, it is possible to compile the Hawkeye source for use
on other SBC’s. I have Hawkeye running on the Lemaker Banana Pro that
runs my weather station and weather station server. After compiling I had to
manually put together, create and then install the Slackwarearm package.

https://github.com/ipartola/hawkeye

Install and configure Hawkeye webcam server

The Raspberry Pi Zero has been given a static IP address. The address in the config file
has to be edited from localhost to 192.168.1.5. Also the webcam resolution and frame rate
is modified to maximum available on the Logitech C270.

IPv4 and IPv6 addresses and hostnames are supported.
host = 192.168.1.5 # Secure default.
port = 8000

fps = 20
width = 1280
height = 720
Only has an effect if format is set to yuv
Quality = 80

Once installed, Hawkeye’s configuation file can be found at /etc/hawkeye/hawkeye.conf.

After editing the config, file restart hawkeye with ‘systemctl restart hawkeye’. The hawkeye
webcam stream can now be accessed at 192.168.1.5:8000.

Real time stream from the Hawkeye webcam server

Create a background image and data label

The Hawkeye server provides a blank webpage with the webcam stream in the centre and
without the temperature and humidity. With ‘bc’ installed for simple math and ‘imagemagick’
installed to work with images a bash script ‘mk-background.sh’ is used to create a
background image and a label containing the temperature, humidity and time data was read.

Blink green LED to show script is running.
/usr/local/bin/wc_jobs -b
#
Get current humidity and create a humidity variable.
in_humid=$(cat/sys/bus/iio/devices/iio:device0/in_humidityrelative_input)
humid=$(echo "scale=3; $in_humid / 1000" | bc)
humid=$(printf "Rh: %.01f%%" $humid)
#
Get current temperature and create a temperature variable.
in_temp=$(cat /sys/bus/iio/devices/iio:device0/in_temp_input)
temp=$(echo "scale=3; $in_temp / 1000" | bc)
temp=$(printf "Temp: %.01f" $temp)

The script is run by cron every 15 minutes to provide a fresh background and fresh data.

Create a background image and data label

Grab a webcam image, modify and create a background image.
wget -O /tmp/output.png http://192.168.1.5:8000/still/0 2> /dev/null
#
convert /tmp/output.png -quality 25 \
-gravity North -chop 0x50 -gravity South -chop 0x50 \
/var/lib/hawkeye/www/background.png 2> /dev/null
#
Create an information label as a .png image.
convert -background white -fill black -font Liberation-Sans \
-pointsize 22 label:"\ $temp $humid Time: $(date "+%H:%M") " \
/var/lib/hawkeye/www/header.png

*/15 * * * * /usr/local/bin/mk-background.sh 1> /dev/null

To run the script every 15 minutes append the following line to root’s crontab.

This script saves both images to /var/lib/hawkeye/www. The complete mk-background.sh
script is provided in Addendum 1.

Grab a webcam image, modify and create a background image.
wget -O /tmp/output.png http://192.168.1.5:8000/still/0 2> /dev/null
#
convert /tmp/output.png -quality 25 \
-gravity North -chop 0x50 -gravity South -chop 0x50 \
/var/lib/hawkeye/www/background.png 2> /dev/null
#
Create an information label as a .png image.
convert -background white -fill black -font Liberation-Sans \
-pointsize 22 label:"\ $temp $humid Time: $(date "+%H:%M") " \
/var/lib/hawkeye/www/header.png

Grab a webcam image, modify and create a background image.
wget -O /tmp/output.png http://192.168.1.5:8000/still/0 2> /dev/null
#
convert /tmp/output.png -quality 25 \
-gravity North -chop 0x50 -gravity South -chop 0x50 \
/var/lib/hawkeye/www/background.png 2> /dev/null
#
Create an information label as a .png image.
convert -background white -fill black -font Liberation-Sans \
-pointsize 22 label:"\ $temp $humid Time: $(date "+%H:%M") " \
/var/lib/hawkeye/www/header.png

Edit /var/lib/hawkeye/www/index.html

<style type="text/css">
body{
 background-image: url('background.png');
 background-size: cover;
 -webkit-background-size: cover;
 -moz-background-size: cover;
 -o-background-size: cover;
 background-repeat: no-repeat;
 background-position: center center;
 }

Open /var/lib/hawkeye/www/index.html and insert the CSS on this slide and the next
slide directly above the HTML tag </head>.

Edit /var/lib/hawkeye/www/index.html

section{
 position: absolute;
 top: 50%;
 left: 50%;
 margin-right: -50%;
 transform: translate(-50%, -50%)
 }
img{
 border-radius: 10px;
 border: 2px solid black;
 }
</style>

Edit /var/lib/hawkeye/www/index.html (continued)

<section>
<div style="text-align: center;"><img src="header.png" width="371"
height="26" alt=""></div>

Add the following line directly above the HTML tag </body>.

Add the following lines directly below the HTML tag <body>.

</section>

The next time the remote webcam is accessed at 192.168.1.5:8000 the webpage will
present with the most recent image of the webcam’s field of view as a background as
well as the most recent temperature and humidity at the remote webcam’s location
displayed in a label.

Live stream with webpage background and data label

Live stream displayed in the LineageOS Jelly browser

C program, wc_jobs, carries out system tasks

While turning on and blinking a LED could be accomplished in a bash script, a system can
not be shut down with a bash script. The C program wc_jobs is used to shut down the
system as well as turn on or blink the green LED.

It shouldn’t be necessary to discuss switching LEDs on and off. However, ‘wc_jobs -m’
involves changing the logic level of a gpio pin and deserves a closer look.

‘wc_jobs -u’ turns on the green LED.

‘wc_jobs -m’ monitors the shutdown switch and shuts down the system when it is
pressed.

‘wc_jobs -b’ blinks the LED 12 times.

‘wc_jobs -d’ turns off the green LED.

C program, wc_jobs, carries out system tasks

Pin 13 is configured as an input pin and pulled up. This makes the logic state of the
pin HIGH (1). When the momentary switch is pressed, pin 13 is shorted to Ground
which changes the pin’s logic state to LOW (0). When the logic state changes to
LOW the command ‘/sbin/shutdown -h now’ is run.

The code for ‘wc_jobs -m’ follows on the next slide.

C program, wc_jobs, carries out system tasks

case 'm': // Monitor for momentary switch press
// and shut down system if pressed.

wiringPiSetup();
pinMode(SHTDWN_PIN, INPUT);
pullUpDnControl (SHTDWN_PIN, PUD_UP);
for(;;)
{

int killval = digitalRead(SHTDWN_PIN);
if (killval == 0)

{
system("/usr/local/bin/wc_jobs -b");
system("/sbin/shutdown -h now");

}
}

The complete source code for wc_jobs is provided in Addendum 2.

The End?

Not quite!

Setting up a pyroelectric infrared (PIR) Motion Sensor

A couple days ago I picked up an Arduino compatible PIR sensor at Jaycar. Too late to
make the cut and be included in the Remote Webcam Mark I but I couldn’t resist testing
how it could be integrated into a future iteration of this project. Jaycar does not provide
much in the way of documentation. It appears to be a clone of the HC-SR501 and you
can find information here https://lastminuteengineers.com/pir-sensor-arduino-tutorial/.

This sensor will run on 4.5-12VDC. Its
logic voltage (output) is 3.3VDC out. This
is compatible with the Raspberry Pi Zero’s
GPIO pins, i.e. 3.3VDC.

I can use the shutdown switch code to
monitor the sensor but in this instance the
GPIO pin will be input, pulled down LOW
(0) with the sensor pulling it HIGH (1)
when motion is detected. I have measured
the logic voltage at ~3.3V but will put a
resistor between the sensor and the GPIO
pin as a precaution.

https://lastminuteengineers.com/pir-sensor-arduino-tutorial/

Setting up a pyroelectric infrared (PIR) Motion Sensor

case 's': // Monitor input pin connected to a
// PIR sensor and grab a still image
// when sensor detects movement.

wiringPiSetup();
pinMode(SNAP_PIN, INPUT);
pullUpDnControl (SNAP_PIN, PUD_DOWN);
for(;;)
{

delay(50);
int snapval = digitalRead(SNAP_PIN);
if (snapval == 1)
{

system("/usr/local/bin/get-image.sh");
system("/usr/local/bin/wc_jobs -b");

}
}

This is the code added to wc_jobs that pulls a GPIO pin down (0) and waits for it to be
pulled up (1) by the PIR sensor. When pulled up it runs a script get-image.sh.

Setting up a pyroelectric infrared (PIR) Motion Sensor

#!/bin/bash
/usr/local/bin/get-image.sh RM20210326
Obtains an image from webcam when PIR Sensor is triggered,
adds a timestamp to the image and saves the image named
with the timestamp.
#
wget -O /tmp/output.png http://192.168.1.6:8000/still/0 2> /dev/null
#
timestamp=$(date +%d-%b-%R)
#
convert /tmp/output.png -pointsize 20 -fill white \
-gravity South -annotate +0+25 "$timestamp" \
/tmp/$timestamp.png

A preliminary test was undertaken by setting a spare Raspberry Pi Zero W with webcam
and the PIR sensor up on the veranda dining table and calling the dog.

A short bash script ‘get-image.sh’ will be run by ‘wc_jobs -s’ when motion is detected. It
will grab an image from the webcam and name that image using a time stamp.

Setting up a pyroelectric infrared (PIR) Motion Sensor

Setting up a pyroelectric infrared (PIR) Motion Sensor

In the image on the previous slide our dog was ~3 metres from the sensor when it detected
his movement. The acacia behind the dog was ~4 metres away from the sensor. The sensor
detected the acacia branches moving in the breeze.

The maximum view angle of the sensor is said to be 110 °. However, after connecting an
LED to the 3.3V output and putting my hand in different locations it seems the maximum view
angle is more like 150 °-160 °. I will have to play with the adjustments and possibly tape over
part of the fresnel lense to narrow the sensor view angle before I decide if this will be suitable
for use with my remote webcam.

Bill of Materials

Logitech C270 Webcam Kogan.com
Raspberry Pi Zero W Core Electronics CE04754
Adafruit HTU21DF Temperature + Humidity Sensor Core Electronics ADA1899
USB DIY Connector Shell-Type Micro-B Plug Core Electronics ADA1390
5VDC 13W Regulated Plugpack (switchmode) Ocean Controls PLP-009
PIR Motion Detector Module Jaycar XC4444
115x90x55 ABS Sealed Enclosure Jaycar HB-6124
SPST N/O Momentary Action Switch Jaycar SP0700
SPST Pushbutton - Black Actuator – Latching Jaycar SP0718
5mm Green Diffused LED Jaycar ZD0170
5mm Red Diffused LED Jaycar ZD0150
5mm LED Clips Black Jaycar HP1102
M3 x 15mm Tapped Metal Spacers (standoffs) Jaycar HP0904
M3 x 10mm Steel Screws Jaycar HP0403

Wire, resistors, crimp pins, etc. were from personal stock or left over from other projects.
Note that perspex or glass cut-offs can be sometimes be obtained for free or inexpensively
from glaziers or plastic fabricators.

This is the end!

If you haven’t asked a question yet, now is the time

and thank you for your kind attention.

Addendum 1: mk-background.sh

#!/bin/bash
/usr/local/bin/make-background.sh RM20210221
Used with remote webcam installation.
Creates a background image for Hawkeye's server index.html
and a data label showing current temperature, humidity
and time reading was taken.
#
Blink green LED to show script is running.
/usr/local/bin/wc_jobs -b
#
Get current humidity and create a humidity variable.
in_humid=$(cat/sys/bus/iio/devices/iio:device0/in_humidityrelative_input)
humid=$(echo "scale=3; $in_humid / 1000" | bc)
humid=$(printf "Rh: %.01f%%" $humid)
#

Addendum 1: mk-background.sh (continued)

Get current temperature and create a temperature variable.
in_temp=$(cat /sys/bus/iio/devices/iio:device0/in_temp_input)
temp=$(echo "scale=3; $in_temp / 1000" | bc)
temp=$(printf "Temp: %.01f" $temp)
#
Grab a webcam image, modify and create a background image.
wget -O /tmp/output.png http://192.168.1.5:8000/still/0 2> /dev/null
#
convert /tmp/output.png -quality 25 \
-gravity North -chop 0x50 -gravity South -chop 0x50 \
/var/lib/hawkeye/www/background.png 2> /dev/null
#
Create an information label as a .png image.
convert -background white -fill black -font Liberation-Sans \
-pointsize 22 label:"\ $temp $humid Time: $(date "+%H:%M") " \
/var/lib/hawkeye/www/header.png

Addendum 2: wc_jobs.c

/*///
/ wc-jobs.c RM20210221 compile to wc_jobs
/ gcc -Wall wc-jobs.c -o wc_jobs -l wiringPi
/
/ This program is used to control Gpio pins in order to power
/ up/down a green LED, blink the green LED, monitor a pin that
/ shuts down the system when a shut down button is pressed.
/ Usage: ws_jobs [OPTION]
/ -u, Power up the green LED
/ -b, Blink the green LED
/ -d, Power down the green LED
/ -m, Monitor the shutdown pin
/ -s, Monitor PIR sensor pin
/
///*/

Addendum 2: wc_jobs.c (continued)

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <wiringPi.h>
#define LED_PIN 29 // The green LED is connected pin 25.
#define SNAP_PIN 7 // Pin 7 set INPUT DOWN when pulled up

// a still image will be taken from
// the webcam.

#define SHTDWN_PIN 13 // Pin 13 is set INPUT UP, 1, when it is
// is pulled DOWN, 0, with a button press
// the system is shutdown.

int main(int argc, char *argv[])
{

int optchar;

Addendum 2: wc_jobs.c (continued)

 while((optchar = getopt (argc, argv, "ubdms")) != -1)
{
switch (optchar)
{
case 'u': // Turn on green LED.

wiringPiSetup();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, HIGH);
break;

case 'd': // Turn off green LED.
wiringPiSetup();
pinMode(LED_PIN, OUTPUT);
digitalWrite(LED_PIN, LOW);
break;

Addendum 2: wc_jobs.c (continued)

case 'b': // Blink green LED.
wiringPiSetup() ;
pinMode(LED_PIN, OUTPUT);
int count_blinks = 1;
while(count_blinks <= 12)
{

digitalWrite(LED_PIN, LOW);
delay(75);
digitalWrite(LED_PIN, HIGH);
delay (75);
count_blinks++;

}

Addendum 2: wc_jobs.c (continued)

case 'm': // Monitor for momentary switch press
// and shut down system if pressed.

wiringPiSetup();
pinMode(SHTDWN_PIN, INPUT);
pullUpDnControl (SHTDWN_PIN, PUD_UP);
for(;;)
{

int killval = digitalRead(SHTDWN_PIN);
if (killval == 0)
{

system("/usr/local/bin/wc_jobs -b");
system("/sbin/shutdown -h now");

}
} // Closes for loop

Addendum 2: wc_jobs.c (continued)

case 's': // Monitor input pin connected to a
// PIR sensor and grab a still image
// when sensor detects movement.

wiringPiSetup();
pinMode(SNAP_PIN, INPUT);
pullUpDnControl (SNAP_PIN, PUD_DOWN);
for(;;)
{

delay(50);
int snapval = digitalRead(SNAP_PIN);
if (snapval == 1)
{

system("/usr/local/bin/get-image.sh");
system("/usr/local/bin/wc_jobs -b");

}
} // Closes for loop

} // Closes switch
} // Closes while loop
return 0;

}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43

