Great Cows, Pythons and
clouds

=3
PC Database

A few years ago

Fell out with my fellow directors and shareholders in a
previous business

Decided to start my own business from scratch (never
done that before)

Thought | would try my hand at developing new some
new products (somewhat dictated by restrictions of trade
with my previous business)

Have not seriously done any real engineering (h/w and
s/w design) for many years. Its just like riding a bike isn’t
It? How hard can it be.

Came up with this idea to develop a device for early
warning for flash flood events

Very little funds so decided to do most of the work
myself. It was fun!

A new product is conceived

 Needed low cost, low power solution so
chose Microchip PIC microprocessor as
the core of the design

Highly integrated (great range of integrated
peripherals)

_ow power

_ots of industry support

— Wide choice of cost effective development

tools/platforms (many in the public domain
space)

[Table Pointer=21=|

Data Bus<=8=

-

| incraec logic

i |

A 4

Address Latch

Frograrms Mernoemy
(B 6/32/64 Khytes)

IFGLATUlPCLATH|
20
[FPeu | PEH [FPoL |
F"rngn:-lrn Counter
| 31---LEVE| Stack
| ETKPTR

Data Latch

Instruction Bus =<16>

a8

| Table Latch]

Data Latch
Data Mermmory

Acicireas Latch

12

PORTA
RAD RAT

Datwm Adcresg-—12=-

4 l12

ROM Latchl]

InsStruction
Decode and

State machinmes
control signals

4
BSR| Access
E g 2? Bank
PORTB
FSR2 12 ;
RBOD. RBT
Address
- Drecoie
PORTC

RCORC7T

Syt [FrRoDH] PRODL |
PORTD
| 8 »x 8 Multiply | RDORD7T
2 Intermal
Q5CT - Oscillator s
Block
OSc2(2) —— - Oscillatar FORTE
LFINTOSC Start-up Timer REO:RE2
SOSCI —— orscillator Power-ornr RE:3)
Reset
16 MHZ
SOsSCO —— Oscillator Watchdog
Tirmer = o
rec
ML —| |Single-Supply Brown-out ||y | Band Gap | 2%
FProgramiming r“_ES'E'- Reference
In-Circuit Fail-Safe
Debugger Clock Monitor
BOR Drata Tirmerl Tirmer2
Timero Timer3 Timeard CTMMLU DAC
HLVD R R TimerSs Timers

FvR ECCP1
EVEE o Comparatons oAk S cCcPa MSSP1 EUSART1 s ek ADC
DAC circz EcePs CCPS rMsSsSP2 EUSARTZ2 10-bit

But what software language?

Being a very lazy programmer, | looked for a product that
would be easy and quick to get things going. | hate “C”

e | stumbled across Great Cow Graphical Basic. This
looked like an easy way to get back into programming
again.

— Has a novel flow programming GUI + traditional text interface
— Extensive library support for PIC/AVR micro families

— Locally developed (Adelaide Uni student)

— Very affordable ($0)

— Enhanced Basic programming language

— Relatively easy to read and learn

— Produces efficient code (size & speed)

— But, initially was still a bit buggy!!

Great Cow Graphical Basic

CEX

Great Cow Graphical BASIC - [Untitled0]
WA Fds Edt View Program Took Help

I Fan
ATE =
[it Leeringth
R
Time wnils
>

| was able to get the first version
developed, sold and into the
field within a mater of months!

pStik flood monitoring
solution

New features required

* | now needed to expand the basic product to
Include new features:
— Image capture and posting to the cloud
— Remote firmware updates

 Problem - DipStik has very minimal resources:
— 64kbyte Flash PROM for program code
— 3.5k bytes RAM
— 31 level stack
— 4 Mhz clock (to keep power consumption down)

— Only RS232 connection to simple 3G modem (but has
basic level socket support via AT commands)

Cloud Solution?

* As the market requirements were growing more
complex, | needed more computing power.

Not desirable to scrap existing DipStik design
Chose to use cloud server to add functionality
Signed up with Digital Ocean ($5/month)

Set up minimal Ubuntu server with its own IP address and
domain name (www.dipstik.info)

Decided to design my own unique comms protocol to fit with
minimal resources on DipStik units

Found some simple serial cameras that could be easily bolted
onto the existing DipStik design

Looked at outsourcing server development but ultimately chose
to do the work myself with some advice from MLUG members

Python sockets

*Never coded in Python
*Never used sockets
How hard can it be?

Echo server program
import socket

HOST =206.128.37.3" # Host IP address
PORT = 50007 # Arbitrary non-privileged port

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)
S.bind((HOST, PORT))
s.listen(1)
conn, addr = s.accept()
print 'Connected by', addr
while 1:
data = conn.recv(1024)
if not data: break
conn.send(data)
conn.close()

Looks easy doesn't it!

TCP/IP

Used TCP/IP sockets as they provide reliable
end to end comms with little application
overhead

TCP/IP sockets supported on my 3G modems

Once socket connection established, modem
can run in simple transparent mode (just looks
like direct serial connection)

Worked really well for capturing image data and
just transferring as one long data stream direct
from the camera (no space in DipStik to store
Image data)

Web server public interface

B Tuftec solutions - Dipstik X | 4= =
& > O | dipstikinfo w| = Ed O

u ﬂc c Technology solutions for demanding applications

DipStik images listing

Proudly provided by Tuftec Solutions - www tuftec.com

Dip5tik0000-Flood-wamning-system.jpg - Fr Jul 31 20:21:06 2015
DipStik0001-Flood-warning-system.ipg - Wed Aug 26 11:32:20 2015
DipStik0057 jpg - Wed Jul 22 12:30:51 2015

DipStik0058 jpg - Wed Jul 22 12:33:31 2015

DipS5tik0059 jpg - Wed Jul 22 12:31:03 2015
DipStik0066-Wernbee-River-Crossing jpe - Wed Jul 22 12:26:20 2013
DipStik0098 jpe - Wed Jul 22 12:31:07 2015

Dip5tik0099 jpg - Wed Jul 22 12:31:11 2015
DipStik0100-MLUG-Demo-system.jpg - Fri Aug 21 21:51:38 2015

The information on this page 1s provided from an automated system. There 1s no validation of this information. It is the responsibility of the internet user to make their own decision
about the currency, accuracy and completeness of the information. Tuftec accepts no responsibility for any loss or damage incurred as a result of this information or its use in anv way.

Captured image with overlayed
flood data

Wwww.tuftec
Watm EPIJ.E 135 mm. "aTn—" n1

Remote firmware download
challenges

Internet communications has horrible latency
Issues

DipStik needed to securely/reliably write to its
own Flash program memory. A slowish process

DipStik must always be able to recover without
any user intervention

Need to split existing DipStik code into
BootLoader and Application areas

BootLoader must be able to work reliably over
the mobile phone network

Cloud comms in the real world

e Do not underestimate

Server DipStik
§I network latency
E —sg — Server In Singapore
=V - — 3G connected Dipstik in
4 sy‘umﬁ | Australia
prac - — Up to 600ms end to end
— = | packet response
— a— — For a small 88k byte file
L u with 43 byte records, this
Data) would take 20 + mins
= ACK — Ouch!!!!
Ly 1 — Not practical for
ACK solar/battery device!
s FIN
—

A simple comms solution

Remove all packet handshaking to get rid of latency issue

DipStik is fairly dumb and needs some time between packets to
process the data. (During Flash ROM programming the CPU
actually stops working!!!)
The Solution:

— Add a fixed delay between packets to enable DipStik to do its stuff

— Easiest way to add a fixed delay is to just add redundant stuffing bytes
into the data stream.

— 20 stuffing characters (null padding bytes) equates to a delay of approx
20ms at 9600 bps.

— Data packets are simple ASCII coded (Intel HEX) so easy to add
redundant stuffing bytes.

Facket 1 Mul padding bytes Packel 2

Final solution

Linux server code spread across 3 programs to handle:
— DipStik image capture
— Custom web server to enable clients to view images

— Firmware download server to automatically handle code updates
to remote DipStik units.

— All application code uses multithreading to enable simultaneous
device and user connections

Firmware updates can now be achieved in a matter of
minutes

As the installed device network grows, the cloud server
solution can easily be upgraded to maintain performance

Peter Stone

Tuftec

SOLUTIONS

www.tuftec.com
peters@tuftec.com

