GnuPG

Danny Robson

Caveats

am not a cryptographer...

out | did do 1 semester of 'computer security'...
over 10 years ago...

take this how you will...

tl:.dr

HOW To LSE PGP To VERIFY
THAT AN EMAIL 1S AUTHENTIC:

LOOK. FOR THIS
TEXT AT HE TOR

BEGIN PGP SIGNED MESSAGE-—--

IF ITS THERE, THE EMAIL 15 PROBABLY FINE.

What?

GnuPG is a command line only tool for:

e Signing
e Encrypting

e |dentity managment

Key ideas

e Encryption

m Symmetric

= Asymmetric/public-key
e Hashing
e Signing

Why?

e Privacy

e Trust

From: - inerdcruft.net>
To: I i 1
Subject: Re: [MLUG] Next meeting - 31st July Monday
Date: S 30 Jul 2017 18:49:37 +1000
Security: GPG signed
On Thu, 27 Jul 20! 17:29:43 +100606

Michael Pope =n m= wrote:

signed at the
y of your
that's how I'11 be |::|::;.j_|-|,;| it).

Féquirea}.

Danny Robson

ture (Daniel Robson =danny@nerdcruft.net>)

Keys

ID
Real name
Email

Comment

Identities

Each identity includes:

e 1 primary key
e 0..n subkeys

How to start

e Create your:
= Primary key
= Revocation certificate
= Subkeys

e Upload your keys

Primary Key

gpg --gen-key
or

gpg2 --full-generate-key

Revocation certificate

Allows you to say 'don’t trust this key anymore'.
gpg --gen-revoke --armour --output=
<path> <email|short|long>
e Do this. Really. Right now.

e Store it somewhere safe.

Subkey

e gpg --edit-key <email|short|long>
= addkey

[]
Encrypting
You can now email passwords to friends.

* gpg --encrypt [--sign] --reclplent=
<name> <filename>

* gpg --decrypt <filename>

[) []
Sighing
You can prove a file hasn’t been tampered with.

gpg --armour --detach-sign path

gpg --verify path.asc path

Making it easy

e Pretty much every mail client has a GPG plugin
= Thunderbird (enigmail), claws, evolution

m Even Outlook

How do we trust
someone?

That's good, but the key creation process feels
insecure...

cat >foo <<KEOF

Key-Type: DSA

Key-Length: 1024

Subkey-Type: ELG-E
Subkey-Length: 1024

Name—-Real: Donald Trump
Name-Comment: Totally legitimate
Name-Email: the.prez@whitehouse.gov
Expire-Date: 0

Passphrase: hunter?

scommit

BOE

gpg —--batch --generate-key foo

Web-of-trust

e You trust Alice, Bob, Dan, Frank

e Alice, Bob, Dan, and Frank vouch for me.

e You can probably trust me.

Key-sighing

1. Get your friends key

2. Check your friends key

3. Sign your friends key

4. Broadcast the signed key*

5. Update your foreign signed keys

Key-sighing

* gpg --recv-keys <short|long|email>

e gpg --fingerprint <short|long|email>
* gpg --sign-key <long>

* gpg --send-keys <long>

e gpg --update-keys

Signing Protocol

1. Meetup verification

1. Fingerprints

2. ldentification
2. Post-meetup verification
1. Fetch the key
2. Verity fingerprint, name, email

3. Confirm the email

Email confirmation

1. Locally sign the key

2. Export the key

3. Encrypt-and-sign the exported key
4. Email to key owner

5. Owner imports and broadcasts to keyserver

Email confirmation -
\ (=

* gpg --sign-key <id>

® gpg --export --armour <id>

e gpg --encrypt <id> --sign --armour
<1d> --output <id>-signedby-<me>.asc

Email confirmation -
Them

* gpg --1import <me>-signedby-<them>.asc

* gpg --send-key <them>

Links

https://wiki.debian.org/Subkeys
https://alexcabal.com/creating-the-perfect-gpg-
keypair/
https://security.stackexchange.com/questions/31594/\
IS-a-good-general-purpose-gnupg-key-setup

https://wiki.debian.org/Subkeys
https://alexcabal.com/creating-the-perfect-gpg-keypair/
https://security.stackexchange.com/questions/31594/what-is-a-good-general-purpose-gnupg-key-setup

