
Btsort - a sort program using a
binary tree

Introduction

Why write a sort program? Well if you need to do a linear search through
UTF-8 data which includes ordinary ASCII data, the sort command available at
the shell prompt by default sorts into dictionary order based on the current
locale. That means that if we are using eg a form of English then the default
ordering will be like 'Agnes' 'agriculture' ... 'Bronwyn' 'brown' and so on.
Moreover words containing apostrophes are required to collate after similar
words without. Now this ordering is perfectly fine for many purposes but when
doing a linear search through data sorted in such an order the search will fail
because the natural bitwise order of ASCII characters is A..Z then a..z. The
situation gets far worse when you need to search through strings of Thai
characters, or for that matter Burmese, Lao or Cambodian. In these languages
some of the vowel symbols are placed before their attached consonants as well
as over, under or after. Compound vowel sounds may be formed from symbols
in combination also. It's not so weird; look at 'hat' and 'hate'. In the second
word the vowel sound is formed by symbols wrapped around the terminal
consonant. In the SE Asian languages the wrapping happens around the initial
consonant never the terminal. So I wrote this progam so as to be able to sort
bitwise left to right ascending or optionally descending regardless of any locale
setting.

Why a binary tree? Binary trees are a fascinating data structure, at least to
me. Insertion is of the order of log(n) where n is the number of items being

sorted. They work very well on random ordered data but do degenerate to n2

behaviour if the data arrives already in order or in reverse order. To overcome
that problem you can use instead a self balancing tree, such as the AVL tree, or
another rather well balanced tree called a red-black tree. This program uses an
AVL tree. Google on AVL Tree and follow the links to Wikipedia; this will
unearth more than enough information on these particular data structures. A
binary tree sort is easily made to produce a stable sort, ie one where equal keys
are sorted in order of arrival. Btsort is almost as fast as qsort when it is
unfettered from any requirement to produce a dictionary order. Of course you
can force qsort to make a stable sort by appending an ASCII formatted record
number but once you do that any speed advantage of qsort is well and truly
lost.

What the program does.

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

1 of 11 29/09/10 14:55

The program sorts a list of lines eg the dictionary used to solve Jumbles,
and sorts it in characterset order. The program reads from a text file and
writes to stdout. I use a dictionary called 'mydict' which is derived from some
source that used Websters spelling. That is fine for puzzles like Jumble which
originates in USA. But I also run a program called 'xword' to cheat on
crossword puzzles which are mostly based on Oxford or Macqaurie spelling.
Consequently I need to add words to 'mydict' from time to time. I do it like this:

user> cp /usr/local/etc/mydict .
user> echo new_word >> mydict
user> btsort mydict > newdict
user> sudo mv newdict /usr/local/etc/mydict

The program has one option, '-d' for a reverse charset ordered sort.

How the program works.

Before getting down to describing binary trees I will start by examining
what they are not, the simple linked list. For each node of a linked list we have
a structure like this:

typedef struct ln {
 char *data;
 char struct ln *next;
} LNODE;

When inserting into a linked list, the first node is appended to a head node and
then after that any insert goes after the nodes that collate earlier and before
those that collate later if any. If there is no bigger item the new node is
appended to the list. In diagram form it is like the following:

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

2 of 11 29/09/10 14:55

So when inserting the item "cat", the link from "bird" to "dog" must be broken
so that "bird" points to "cat" which in turn points to "dog". The list looks like
this:

Well a binary tree is quite unlike the above. First the the data structure:

typedef struct tn {
 char *key;
 struct tn *left;
 struct tn *right;
}TNODE;

The binary tree node has, in the simplest form at least, a minimum of two
pointers, one I'll call left, the other right. Now the usual convention is if an
item is less than any existing item the program examines the path pointed to by
left, otherwise it follows the path to the right. But unlike the linked list above,
no linkage is ever broken and reassigned, the program simply follows the
sorting rule until it finds an empty path, ie a NULL pointer, and assigns that
pointer to the address of the new node. In other words all new insertions are
leaf nodes.

Lets examine what happens when we insert that favourite sentence of the tty
guys of yore: "now is the time for every good man to come to the aid of the
party". The diagram below shows the tree with the first words inserted:

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

3 of 11 29/09/10 14:55

And here is the tree complete:

Since the purpose of the tree in this program to sort data in characterset
order the next process is an 'inorder' traversal of the tree.

Inorder traversal

The inorder traversal requires a visit to the leftmost node of the tree and
then as we return up the tree.

Output this node.1.
Up to the parent node. Output this node.2.
Traverse the right subtree following the same rules as above.3.

There is also the 'post order' traversal of the tree wherein we travel as far
right as posible in a mirror of the inorder traversal and thus obtain a

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

4 of 11 29/09/10 14:55

descending order sort.

How it works (The program listing).

 1 /* btsort.c - binary tree sort program for lines of chars eg as in a
 2 * dictionary. Sorting is done using an AVL tree so it's well behaved
 3 * on pre sorted data. The sort is stable, ie identical elements are
 4 * output in order of receipt. The program reads from argv[1] or
 5 * argv[2] and writes to stdout.
 6 */
 7 #include<stdio.h>
 8 #include<string.h>
 9 #include<stdlib.h>
 10 #include<ctype.h>
 11
 12 // #define DEBUG 1
 13 #ifdef DEBUG
 14 typedef struct tn {
 15 char *key;
 16 struct tn *left;
 17 struct tn *right;
 18 int balance;
 19 int number;
 20 }TNODE;
 21 #endif
 22 #ifndef DEBUG
 23 typedef struct tn {
 24 char *key;
 25 struct tn *left;
 26 struct tn *right;
 27 int balance;
 28 }TNODE;
 29 #endif
 30 TNODE *newnode(char *line);
 31 char *getlin(FILE *fp); // so named because getline() exists;
 32 // it returns a '\n' I don't want.
 33 TNODE *tinsert(TNODE *parent, TNODE *node, char *line, int dir);
 34 void tprint(TNODE *node);
 35 void rprint(TNODE *node);
 36 void inprint(TNODE *node);
 37 #ifdef DEBUG
 38 int node_count = 0;
 39 void node_print(TNODE *parent, TNODE *node, char *text);

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

5 of 11 29/09/10 14:55

 40 #endif
 41 void do_error(char *msg);
 42
 43 enum{Left = -1, Right = 1, None = 0};
 44
 45 int main (int argc, char** argv) {
 46 TNODE *head = NULL;
 47 char *line;
 48 int sortdir = 0;
 49 FILE *fpi;
 50 char *infile;
 51 #ifdef DEBUG
 52 if (system("ls track > /dev/null") == 0)
 53 system("rm track");
 54 #endif
 55 if (argc == 3){
 56 if (strcmp("-d", argv[1]) == 0)
 57 sortdir = 1;
 58 else
 59 do_error("invalid option");
 60 infile = argv[2];
 61 } else {
 62 infile = argv[1];
 63 }
 64 fpi = fopen(infile, "r");
 65 if (!(fpi)) {
 66 fprintf(stderr, "Failed to open %s\n", infile);
 67 exit(1);
 68 }
 69 while ((line = getlin(fpi))) {
 70 head = tinsert(NULL, head, line, None);
 71 }// while()
 72 if (sortdir == 1)
 73 rprint(head);
 74 else
 75 tprint(head);
 76 //puts("");
 77 /* inprint(head);
 78 puts("");*/
 79 return 0;
 80 }// main()
 81 TNODE *newnode(char *line){
 82 char *p;
 83 TNODE *tmp = (TNODE *)malloc(sizeof(TNODE));

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

6 of 11 29/09/10 14:55

 84 if (tmp && (p = strdup(line))) {
 85 tmp->left = NULL;
 86 tmp->right = NULL;
 87 tmp->key = p;
 88 tmp->balance = 0;
 89 #ifdef DEBUG
 90 node_count++;
 91 tmp->number = node_count;
 92 #endif
 93 } else {
 94 fprintf(stderr, "Could not get memory\n");
 95 exit(1);
 96 }
 97 return tmp;
 98 }// newnode()
 99 TNODE *tinsert(TNODE *parent, TNODE *node, char *line, int dir){
100 int result;
101 if (node == NULL) {
102 node = newnode(line);
103 } else if ((result = strcmp(line, node->key)) >= 0) {
104 node->balance++;
105 node->right = tinsert(node, node->right, line, Right);
106 } else {
107 node->balance--;
108 node->left = tinsert(node, node->left, line, Left);
109 }
110 if (node->balance == -2){ /* rotate right
111 have to make the left child the parent of
112 the node we are looking at */
113 TNODE *np, *op, *ll; // new parent, old parent, left link
114 #ifdef DEBUG
115 node_print(parent, node, "Before right rotation\n");
116 #endif
117 /* Terminology:
118 Old parent, the node we are looking at
119 New parent, the left child of the old parent
120 What changes:
121 1. Left link of old parent to become the right link
122 of the new parent.
123 2. Right link of new parent -> old parent.
124 3. Balance of both new and old becomes 0
125 What stays the same:
126 1. Left link of new parent remains as is.
127 2. Right link of old parent remains as is.

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

7 of 11 29/09/10 14:55

128 */
129 /* preserve existing states before we destroy any
130 existing linkage
131 */
132 np = node->left;
133 op = node;
134 ll = np->right; // What changes 1.
135 np->right = op; // What changes 2.
136 op->left = ll; // What changes 1.
137 np->balance = op->balance = 0; // What changes 3.
138 node = np; // New parent
139 #ifdef DEBUG
140 node_print(parent, node, "After right rotation\n");
141 #endif
142 }// if (node->bal...
143 if (node->balance == 2){ /* rotate left
144 have to make the right child the parent of
145 the node we are looking at */
146 TNODE *np, *op, *rl; // new parent, old parent, right link
147 #ifdef DEBUG
148 node_print(parent, node, "Before left rotation\n");
149 #endif
150 /* Terminology:
151 Old parent, the node we are looking at
152 New parent, the right child of the old parent
153 What changes:
154 1. Right link of old parent to become the left link
155 of the new parent.
156 2. Left link of new parent -> old parent.
157 3. Balance of both new and old becomes 0
158 What stays the same:
159 1. Right link of new parent remains as is.
160 2. Left link of old parent remains as is.
161 */
162 /* preserve existing states before we destroy any
163 existing linkage
164 */
165 np = node->right;
166 op = node;
167 rl = np->left; // What changes 1.
168 np->left = op; // What changes 2.
169 op->right = rl; // What changes 1.
170 np->balance = op->balance = 0; // What changes 3.
171 node = np; // New parent

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

8 of 11 29/09/10 14:55

172 #ifdef DEBUG
173 node_print(parent, node, "After left rotation\n");
174 #endif
175 }// if (node->bal...
176 return node;
177 }// tinsert()
178 #define MAX 1000
179 char *getlin(FILE *fp){
180 static char buf[MAX];
181 int ch, count;
182 count = 0;
183 while ((ch = fgetc(fp)) != EOF && (ch != '\n'))
184 buf[count++] = ch;
185
186 buf[count] = '\0';
187 if (ch == EOF)
188 return NULL;
189 else
190 return buf;
191 } // getlin()
192 void tprint(TNODE *node){
193 // pre-order traversal
194 if (node->left)
195 tprint(node->left);
196 printf("%s\n", node->key);
197 if (node->right)
198 tprint(node->right);
199 return;
200 }// tprint()
201 void rprint(TNODE *node){
202 // post-order traversal
203 if (node->right)
204 rprint(node->right);
205 printf("%s\n", node->key);
206 if (node->left)
207 rprint(node->left);
208 return;
209 }// rprint()
210 void inprint(TNODE *node){
211 // inorder traversal
212 printf("%3d %s\n", node->balance, node->key);
213 if (node->left)
214 inprint(node->left);
215 if (node->right)

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

9 of 11 29/09/10 14:55

216 inprint(node->right);
217 return;
218 }// inprint()
219 #ifdef DEBUG
220 void node_print(TNODE *parent, TNODE *node, char *text) {
221 FILE *fp;
222 fp = fopen("track", "a");
223 fputs(text, fp);
224 fprintf(fp, "node count %d\n", node_count);
225 if(parent)
226 fprintf(fp, "parent->key %s ..->number %d\n", parent->key,
227 parent->number);
228 fprintf(fp, "node->key %s ..->number %d\n", node->key,
node->number);
229 if (node->left) {
230 fprintf(fp, "node->left->key %s ..->number %d\n",
231 node->left->key,
232 node->left->number);
233 if (node->left->left)
234 fprintf(fp, "node->left->left->key %s ..->number %d\n",
235 node->left->left->key,
236 node->left->left->number);
237 if (node->left->right)
238 fprintf(fp,"node->left->right->key %s ..->number %d\n",
239 node->left->right->key,
240 node->left->right->number);
241 }// if (node->left)
242 if (node->right) {
243 fprintf(fp, "node->right->key %s ..->number %d\n",
244 node->right->key,
245 node->right->number);
246 if (node->right->right)
247 fprintf(fp,"node->right->right->key %s ..->number %d\n"
248 ,node->right->right->key,
249 node->right->right->number);
250 if (node->right->left)
251 fprintf(fp,"node->right->left->key %s ..->number %d\n",
252 node->right->left->key,
253 node->right->left->number);
254 }// if (node->right)
255 fputs("\n", fp);
256 fflush(fp);
257 fclose(fp);
258 return;

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

10 of 11 29/09/10 14:55

259 }// node_print()
260 #endif
261 void do_error(char *msg) {
262 fputs(msg, stderr);
263 fputs("\n", stderr);
264 exit(1);
265 } // do_error()

Afterwords

Some improvements are strongly needed:

It needs a help function so the initial processing should be replaced with
standard options processing, maybe allowing the output file to be
specified but default to standard out.

1.

The sorted file ends up entirely in memory along with the necessary tnode
structures which will number slightly more than 50% of the input line
count. Each line read is strdup() on read. Possibly I can gain some speed
advantage by reading the entire file into memory after opening and then
preallocate the space for the tnodes. There would be some waste of
memory because I'd allocate one tnode per line.

2.

Implementing the above would allow me to have memory allocation
failures followed by sorting the file in two halves, four quarters etc and
then merge the smaller parts of the file. Whether I'd go that far depends
on the how much use this program gets in the wild.

3.

That leads me to the next necessity. Put it up somewhere! Sourceforge or
Ubuntu One. Suggestions are welcome.

4.

Btsort Explanation file:///home/bob/Desktop/Btsort/btsort_explain.html

11 of 11 29/09/10 14:55

