

An introduction to GNU screen
Terminal manager with vt100/ANSI terminal

emulation

Malcolm Herbert
mjch@mjch.net

2013-02-27

mailto:mjch@mjch.net

What screen is

● screen is a text-only window manager which
multiplexes a single terminal between several
processes (most often interactive shells)

● Each terminal window provides VT100-like
emulation to the applications run under it and
screen itself supports any terminal defined in
termcap or terminfo for the display

● Sessions may be detached and re-attached
without changing the state of the clients

● The history buffer provides cut-and-paste access
to allow moving text regions between windows

What screen isn't

screen understands text and terminals and that's
about it.
● Doesn't know anything about X11 windows
● Doesn't know anything about X11 mice
● Limited support for multi-character languages

Other screen-like things

The following commands do similar screen-like things:
● window (4.3BSD, circa 1993)

Allows arbitrary text panes, a text-based wm
● splitvt (circa 1995)

Basic two-pane terminal splitter.
● twin (Linux, circa 2009)

Seems to be similar in focus to window
● tmux (OpenBSD, circa 2009)

About on par with screen for features now

Getting started

From the prompt, simply type

screen

This will create a new screen session, open
a new window and then spawn a fresh shell.

At this point, if you exit the shell, screen will
also close.

Basic screen commands

Once in screen, there are many two-key
sequences which control screen behaviour

create a window: ctrl-a c
kill a window: ctrl-a k
show windows: ctrl-a w
show help list: ctrl-a ?
switch to window n: ctrl-a n

Some commands are available from the
shell

Creating another window

There are several ways to create windows:

● from your screen-managed shell:

screen

● similarly, to spawn an application:

screen vi foo

More basic commands

title a window: ctrl-a A name

prompt for name: ctrl-a ' name
select from list: ctrl-a ”

switch to next: ctrl-a n
switch to prev: ctrl-a p

toggle recent: ctrl-a ctrl-a

More basic commands

screen automatically determines the size of
your terminal, but sometimes needs help:

Fit to terminal: ctrl-a F

The X11 resize command is also useful
before you start a session:

maja[~] 6v>: resize -u
COLUMNS=152;
LINES=47;
export COLUMNS LINES;

Extended features

The previous commands are the essential
ones which will get you going in the short
term - it gets really interesting from here:
● Scrollback buffer
● Cut and paste
● Suspend/resume
● Multi-head capability
● Window monitoring/logging

... and more

Scrollback buffer

screen conveniently keeps session history:

enter history: ctrl-a [
exit history: ESC

Once in the buffer, use vi key bindings:

movement: i, j, k, l, ctrl-u, ctrl-d, etc
search: / (fwd), ? (rev), n (next)

Cut and paste

The buffer allows cut and paste:

Selecting text:

• Navigate to where you want to start
• Press enter
• Navigate to where you want to stop
• Press enter again

Screen will then exit the history buffer.

Cut and paste

Having selected a region, you can do this:

paste selection: ctrl-a]

... or you can copy the selected text to/from
the temporary file /tmp/screen-exchange

dump to file: ctrl-a >
read from file: ctrl-a <
delete file: ctrl-a =

Advanced cut and paste

screen lets you join lines of selected text.

Whilst inside the history buffer and before
you have finished a selection:

J cycle through:
• Join lines with no space
• Join lines with space
• Join lines with comma
• Leave as multiple lines

Advanced cut and paste

screen also allows you to select an arbitrary
region of text which you can then join as
above – most useful for constructing long
lines of PIDs for kill, for example.

Whilst inside history buffer and before you
have finished a selection:

set left margin: c
set right margin: C

Suspend and resume

screen is able to detach from the 'head'
terminal and maintain the session whilst
disconnected. This is a very very useful
feature.

detach: ctrl-a d

To reattach, use the following command:

screen -r

Suspend and resume

Sometimes screen has more than one
session open and needs help to work out
which you want to open again:

maja[~] 2>: screen -r
There are several suitable screens on:
 1905.ttyp1.maja (Detached)
 2212.ttyp4.maja (Detached)
Type "screen [-d] -r [pid.]tty.host" to
resume one of them.

Suspend and resume

You may have a remote session you want to
close and log out – use the 'power detach'

screen -D

or, from inside screen in multi-head mode:

power detach: ctrl-a D

Use these to drag sessions to your terminal.

Multi-head mode

In essence, multi-head mode is just being
able to 'resume' a session whilst staying
logged in on the other terminal:

screen -x

Both sessions are now completely available
from either 'head' terminal ... including
viewing the same one at the same time.

See the manual for more option combos.

Monitoring modes

screen can listen in on your sessions and
raise an alert when it detects silence and/or
activity – this can be useful if you don't want
to watch a log but do want to know if it stops:

monitor activity: ctrl-a M
monitor silence: ctrl-a _

These options toggle on/off and both may be
active at the same time.

Screen colon prompt

All screen commands are available from the
colon prompt, even if not bound to keys.

colon prompt: ctrl-a :

Useful commands:

visual bell on: vbell on
visual bell off: vbell off
new shell env: setenv BLAH foo

Multiple windows

screen can display multiple windows at once
by splitting the terminal horizontally into
multiple regions. Each individual window is
completely independent of the others.

split screen: ctrl-a S
focus on next: ctrl-a TAB

recombine: ctrl-a Q

Sadly, detach/resume forces a recombine.

Multiple windows

Window regions can be resized arbitrarily or
set so that all share equally. From the colon
prompt, resize the window in focus:

resize absolute: resize n
resize relative: resize +n

resize -n

equal sizes: resize =

Configuring screen

screen is configured from $HOME/.screenrc
by default but you can include other files for better
management of more complex configuration.

An example directory layout:

.screenrc -> .screen/default/client

.screen/default/client

.screen/default/logging

.screen/default/meta

.screen/default/pconsole

.screen/eeny/client

.screen/eeny/pconsole

.screen/exchange

.screen/logs/

Configuring screen

For example, ~/.screenrc contains:

default-client config

source $HOME/.screen/default/common

#password xxxxxxxxx

Common screen configuration

~/.screen/default/common contains:

startup_message off
autodetach on

vbell off
vbell_msg "BELL"
bell "Bell in main window %"

defscrollback 10000
defutf8 on

zombie kc
nethack on
bufferfile $HOME/.screen/exchange
deflogin off
defautonuke on

fit

Common screen configuration

~/.screen/default/common (cont.):

bind ! select 11
bind @ select 12
bind \# select 13
bind $ select 14
bind % select 15
bind \136 select 16
bind & select 17
bind * select 18
bind (select 19
bind) select 10

Screen shell-script management

~/bin/screen-client:

#!/bin/sh

unset STY

host=`uname -n | sed -e 's/\..*//'`
level=client
name=${host}/${level}
sess=${host}-${level}
config=$HOME/.screen

if [! -r ${config}/${name}]; then name=default/${level}; fi

exist=`screen -ls 2>&1 | cut -f2 | sed -ne "\#$sess#p" |
head -1`

if [! -z "$exist"] ; then
 exec screen -U -m -xr ${exist} -c ${config}/${name} "$@"
else
 exec screen -U -m -S ${sess} -c ${config}/${name} "$@"
fi

Per-host config

The previous scripts allow for per-host
configuration by default.

For example:

~/.screen/eeny/client:
source $HOME/.screen/default/client

screen -t eeny ssh eeny.virtual
screen -t meeny ssh meeny.virtual
screen -t miny ssh miny.virtual
screen -t mo ssh mo.virtual

Configuring screen

Some people like having a fixed status line
visible at the bottom of the terminal all the
time:

hardstatus on
hardstatus lastline
hardstatus string "%w"

There are many possible format strings, see
the manual for more.

Shell magic

Like many vt100 emulators, screen has
escape sequences to allow the application
to change titles of windows:

Title string: ESCkstringESC\ CR

eg, tcsh: alias precmd \
 'echo -n "^[k$host^[\ ^M"'

Logging sessions

Like script, screen can allow you to capture
your complete session for later review.

Apart from logging keys and responses,
screen can optionally add date stamps and
other items.

In these examples, session logs will be
written to ~/.screen/logs/

Configuring for logging

~/.screen/default/logging:

default-logging config

source $HOME/.screen/default/client

backtick 9 1 1 date '+%Y%m%d%H%M%S'

logfile $HOME/.screen/logs/%9`-%n-%t.log
logfile flush 5

logtstamp on
logtstamp after 120
logtstamp string "[[%Y-%m-%d %0c:%s %n %t]]"

deflog on

Configuring for logging

~/bin/screen-logging:

#!/bin/sh

unset STY

host=`uname -n | sed -e 's/\..*//'`
level=logging
name=${host}/${level}
sess=${host}-${level}
config=$HOME/.screen

if [! -r ${config}/${name}]; then name=default/${level}; fi

exist=`screen -ls 2>&1 | cut -f2 | sed -ne "\#$sess#p" |
head -1`

if [! -z "$exist"] ; then
 exec screen -U -m -xr ${exist} -c ${config}/${name} "$@"
else
 exec screen -U -m -S ${sess} -c ${config}/${name} "$@"
fi

Cluster sessions

Although screen is good at managing single
sessions, with larger groups of hosts it can
be very useful to have parallel sessions open
to run the same commands in sync.

Traditional tools such as cssh require X11 to
run and don't allow nearly as many features,
whilst puppet et al are non-interactive.

Thankfully, screen and pconsole can be
used to multiplex keystrokes to multiple
windows whilst keeping screen features.

Configuring for clusters

~/.screen/default/pconsole:

default/pconsole config

source $HOME/.screen/default/pconsole-head

source $HOME/.screen/default/pconsole-tail

Configuring for clusters

~/.screen/default/pconsole-head:

default/pconsole config

source $HOME/.screen/default/logging

deflogin on
deflog off

screen -t pconsole sh -c "sleep 3; $HOME/bin/pconsole-
attach.ksh"

deflog on

Configuring for clusters

~/.screen/default/pconsole-tail:

select 0
split
resize 1
focus bottom
select 1
focus top

Configuring for clusters

~/bin/pconsole-attach.ksh:

#!/bin/ksh -x

read "pause?Hit enter to start pconsole: "

self=`tty | sed -e 's#/dev/##'`
parent=`who | grep $self | sed -e 's/:S.[0-9].*//' -e
's/.*://'`

devs=""
who | sed -ne "\@$parent:S.[0-9]*@p" |&
while read -p user tty mon mday time from ; do
 if ["$tty" != "$self"] ; then
 devs="$devs /dev/$tty"
 fi
done

sudo pconsole $devs

Configuring for clusters

~/bin/screen-pconsole:

#!/bin/sh

unset STY

host=`uname -n | sed -e 's/\..*//'`
level=pconsole
name=${host}/${level}
sess=${host}-${level}
config=$HOME/.screen

if [! -r ${config}/${name}]; then name=default/${level}; fi

exist=`screen -ls 2>&1 | cut -f2 | sed -ne "\#$sess#p" |
head -1`

if [! -z "$exist"] ; then
 exec screen -U -m -xr ${exist} -c ${config}/${name} "$@"
else
 exec screen -U -m -S ${sess} -c ${config}/${name} "$@"
fi

Per-cluster config

Similarly for the per-host config, we can set
up a screen config to open all the cluster
nodes at once. For example:

~/.screen/eeny/pconsole:
source $HOME/.screen/default/pconsole-head

screen -t eeny ssh eeny.virtual
screen -t meeny ssh meeny.virtual
screen -t miny ssh miny.virtual
screen -t mo ssh mo.virtual

source $HOME/.screen/default/pconsole-tail

Meta-screen sessions

Naturally, with more than one configuration
or several sets of isolated sessions on
various remote hosts you would want to
manage them in turn with screen itself.

This would allow cut and paste between
remote screen sessions using a meta-
session. Multi-head ability allows swapping
sets of screen sessions between two
terminal windows, for example ...

Configuring meta-screen

By default the 'escape sequence' is ctrl-a,
but can be changed to ctrl-q with:

escape ^Qq

Line discipline could ruin your day – use stty
to turn off special action from your shell:

stty start ^-
stty stop ^-

Configuring meta-screen

~/.screen/default/meta:

default-meta config

source $HOME/.screen/default/common

#password xxxxxxxxxx

escape ^Qq

Meta-screen shell-script

~/bin/screen-client:

#!/bin/sh

unset STY

host=`uname -n | sed -e 's/\..*//'`
level=meta
name=${host}/${level}
sess=${host}-${level}
config=$HOME/.screen

if [! -r ${config}/${name}]; then name=default/${level}; fi

exist=`screen -ls 2>&1 | cut -f2 | sed -ne "\#$sess#p" |
head -1`

if [! -z "$exist"] ; then
 exec screen -U -m -xr ${exist} -c ${config}/${name} "$@"
else
 exec screen -U -m -S ${sess} -c ${config}/${name} "$@"
fi

... and more

That's really about all the screen features
that I regularly use, but it also can do:
●Manage sessions/windows with user ACLs
●Start screen sessions in the background
●Use a lock program for pretty screen saver
●Grab system console
●Very hairy pipe/fd magic with exec (run less
on command output after start!?)

Wishlist

There are always things that our favourite
tools don't to that we really would like them to
– screen is no different:
●Recovering commands used to initiate a
window
●Configurable digraph table and better multi-
lingual support
●Better client-server model (tmux has this)
●others?

More information

Seriously, I've only just scratched the surface
here – the manual entry is huge (around 30
pages, from memory) and is worth a good
look. I regularly re-read it and usually find
something useful I didn't already know.

man screen

http://www.gnu.org/software/screen/

Comments, questions?

An introduction to GNU screen
Terminal manager with vt100/ANSI terminal

emulation

Malcolm Herbert
mjch@mjch.net

2013-02-27

Git repository of talk materials and configs:
http://deimos.ergonaut.org/repository/talks-screen

mailto:mjch@mjch.net

License
Copyright (c) 2013, Malcolm Herbert. All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS MATERIAL IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51

