

A Brief Introduction Das U-Boot

A.K.A U-Boot
Presented By: Rick Miles

Melbourne Linux Users Group - 31 Oct. 2016

This presentation will cover:
● What is U-Boot
● Building U-Boot
● Installing U-Boot to an SD Card
● The U-Boot boot process
● Commands and Variables in U-Boot
● Using Boot scripts with U-Boot
● Booting via TFTP with U-Boot

Caveat!
There always is one somewhere

I have 2 Lemaker Banana Pro’s They use an
Allwinner A-20 dual core (2 x Cortex-A7)
processor. Allwinner A7 series processors use
the machine descriptor (mach) sunxi.

As such my presentation may seem “sunxi”
oriented but should serve as a basic U-Boot
introduction relevant to other ARM CPU’s and
Boards.

What is U-Boot?
● Das U-Boot is an open source, primary boot

loader used in embedded devices to package
the instructions to boot the device's operating
system kernel.

● U-Boot provides out-of-the-box support for
hundreds of embedded boards and a wide
variety of CPUs including PowerPC, ARM,
XScale, MIPS, Coldfire, NIOS, Microblaze, and
x86.

● The user interface to U-Boot consists of a
command line interrupter, much like a Linux
shell prompt

What is U-Boot? (cont)

● U-Boot uses commands similar to the BASH
shell to manipulate environment variables.

● U-Boot supports TFTP (Trivial FTP), a stripped
down FTP. So that user authentication is not
required for downloading images into the
board's RAM.

Building U-Boot

U-Boot can be either cross compiled or built natively. The
source contains headers and include files for all supported
devices. Two commands are required to create the U-Boot
binary for a Lemaker Banana Pro.

In this instance a file is created comprising U-Boot and
SPL.bin (Secondary Program Loader).

Installing U-Boot on an SD Card

U-Boot is installed at the beginning of a SD Card and
before any partitions. Vendors will hard code processors to
find the SPL.bin in a given location

Installing U-Boot on an SD Card

The command dd is used to transfer the SPL binary and U-
Boot to an SD Card beginning at the 8th sector.

The U-Boot Boot Process

1) ROM does essential initalisations, checks for SPL and
then loads it, if it is present, on the SD Card into SRAM
(Static RAM).

2) SPL continues initilisation, prepares for and then loads
U-Boot into RAM.

3) U-Boot continues setup according to U-boot default
environmetal values, variables and commands provided
in a boot script and/or variables and commands
provided in real time via comman line.

4) Kernel is loaded and system boots into runtime
environment.

Commands and Variables
It would not be possible to cover the range of commands
available in U-Boot. Instead I will provide some practical
examples I use.

Next is a command to load the variable fdt_addr from the
first partition on the sd card.

Below are four commands setting up variables. The first
three provide locations in RAM for the DT (Device Tree)
blob, kernel and ramdisk (initrd image). The fourth line
supplies variables for a U-Boot reserved variable
bootargs.

Commands and Variables (cont.)

This command will load the kernel to RAM.

 The following command will load the initrd image to RAM.

In this final line the U-Boot command bootz is used to boot
the kernel (zImage) with the ramdisk and fdt being passed to
it.

Using boot scripts with U-Boot
U-Boot commands can be put together in a text file and then
the text files used to create a boot.scr. U-boot will look for the
script in the root or /boot directory of the first partition on the
SD Card, If not found it will look in any SATA disk present and
finally in any USB storage device present

Booting via TFTP with U-Boot

Here is how I set up to boot into a Slackware install on a
BananaPro using a kernel, Initrd image and DTB located on
another computer set up as a TFTP server.

U-Boot environmental settings on the BananaPro’s SD Card
are default. After booting into a U-Boot command prompt I
use the following commands to set up for booting via TFTP
from the server at 192.168.1.2.

Booting via TFTP with U-Boot (cont.)

Below the tftp-boot.cmd I use to create a boot.scr that is
copied into /tftpboot on the server, 192.168.1.2

Booting via TFTP with U-Boot (cont.)

Here’s a bit of screenshot of a TFTP boot in progress. Note
that the bananapro dtb download is complete and the kernel
download has commenced

That’s about it for a lightening introduction. If there’s still some
time left I’d like to demonstrate U-boot using a USB To RS232
Serial Adapter between my BananaPro and netbook.

If there’s not enough time may I thank you for your kind
attention.

References and further reading:
Keep in mind that U-Boot has a bi-monthly release cycle and
documentation found on the web may be out of date. However, I found
the following very helpful.

● U-Boot/Documentation: http://www.denx.de/wiki/U-Boot

● https://wiki.debian.org/InstallingDebianOn/Allwinner

● http://processors.wiki.ti.com/index.php/Booting_Linux_kernel_using_
U-Boot

● http://linux-sunxi.org

● http://slackware.uk/slackwarearm/slackwarearm-
current/INSTALL_BANANAPI.TXT

https://wiki.debian.org/InstallingDebianOn/Allwinner

Addendum: Comparison of Boot Processes

U-Boot Boot Process

IBM X86 Boot Process

RaspberryPi A and B Boot Process

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

