A Brief Introduction Das U-Boot

A.K.AU-Boot

Presented By: Rick Miles
Melbourne Linux Users Group - 31 Oct. 2016

This presentation will cover:

* What is U-Boot

 Building U-Boot

* Installing U-Boot to an SD Card

* The U-Boot boot process

« Commands and Variables in U-Boot
» Using Boot scripts with U-Boot

* Booting via TFTP with U-Boot

Caveat!

There always is one somewhere

| have 2 Lemaker Banana Pro’s They use an
Allwinner A-20 dual core (2 x Cortex-A7)
processor. Allwinner A7 series processors use
the machine descriptor (mach) sunxi.

As such my presentation may seem “sunxi”
oriented but should serve as a basic U-Boot

Introduction relevant to other ARM CPU’s and
Boards.

What is U-Boot?

 Das U-Boot is an open source, primary boot
loader used in embedded devices to package
the Instructions to boot the device's operating
system kernel.

* U-Boot provides out-of-the-box support for
hundreds of embedded boards and a wide
variety of CPUs including PowerPC, ARM,
XScale, MIPS, Coldfire, NIOS, Microblaze, and
X80.

* The user interface to U-Boot consists of a
command line interrupter, much like a Linux
shell prompt

What is U-Boot? (cont)

 U-Boot uses commands similar to the BASH
shell to manipulate environment variables.

 U-Boot supports TFTP (Trivial FTP), a stripped
down FTP. So that user authentication Is not

required for downloading images into the
board's RAM.

Building U-Boot

U-Boot can be either cross compiled or built natively. The
source contains headers and include files for all supported
devices. Two commands are required to create the U-Boot
binary for a Lemaker Banana Pro.

I1Ck@bpl09 ~/u-boot-2016.09% make Bananapro_defconfig

ro9:~/u-boot-2016.09% make

In this instance a file is created comprising U-Boot and
SPL.bin (Secondary Program Loader).

rick@bpro9:~/u-boot-2016.09% 1s -1lh u-boot-sunxi-with-spl.bin

-rw-r--r-- 1 rick users 477K Oct 9 08:51 u-boot-sunxi-with-
spl.bin

Installing U-Boot on an SD Card

U-Boot is installed at the beginning of a SD Card and
before any partitions. Vendors will hard code processors to
find the SPL.bin In a given location

start size usage

0 s8lB Unused, available for partition table etc.
8 24KB |Initial SPL loader

32 512KE UBoot

544 12B8KE environment

672 |352KEB reserved

1024 |- Free for partitions
http:/llinux-sunxi.org/Bootable_SD_card

Installing U-Boot on an SD Card

The command dd is used to transfer the SPL binary and U-
Boot to an SD Card beginning at the 8" sector.

root@bpro9:~# dd if=u-boot-sunxi-with-spl.bin of=/dev/sdd bs=1024 seek=8

The U-Boot Boot Process

CPU ROM SPL U-Boot KERNEL

Loads SPL Sets up for Manual or Initialisation

U-Boot scripted
variables

1) ROM does essential initalisations, checks for SPL and
then loads it, If it is present, on the SD Card into SRAM
(Static RAM).

2) SPL continues Initilisation, prepares for and then loads
U-Boot into RAM.

3) U-Boot continues setup according to U-boot default
environmetal values, variables and commands provided
In a boot script and/or variables and commands
provided In real time via comman line.

4) Kernel is loaded and system boots into runtime
environment.

Commands and Variables

It would not be possible to cover the range of commands
available in U-Boot. Instead | will provide some practical

examples | use.

Below are four commands setting up variables. The first
three provide locations in RAM for the DT (Device Tree)
blob, kernel and ramdisk (initrd image). The fourth line
supplies variables for a U-Boot reserved variable

bootargs.

setenv fdt_addr 0x43000000
setenv kernel _addr_r 0x47000000

setenv ramdisk_addr_r 0x48000000
setenv bootargs console=ttyS0,115200n8 root=/dev/sdal waitforroot=3 rootfstype=extd

Next iIs a command to load the variable fdt_addr from the
first partition on the sd card.
> extd4load mmc 0 ${fdt_addr} /boot/dtb/sun7i-a20-bananapro.dtb

29223 bytes read in 889 ms (31.3 KiB/s)

Commands and Variables (cont)

This command will load the kernel to RAM.

=> extdload mmc 0 ${kernel _addr_r} /boot/zImage-armv7

4058096 bytes read in 304 ms (12.7 MiB/s)

The following command will load the initrd image to RAM.

=> extdload mmc 0 ${ramdisk addr _r} /boot/initrd-armv7
44930974 bytes read in 2258 ms (19 MiB/s)

In this final line the U-Boot command bootz is used to boot
the kernel (zimage) with the ramdisk and fdt being passed to
It.

=> bootz ${kernel _addr_r} ${ramdisk _addr_r}:${filesize} ${fdt_addr}
Kernel image @ 0x47000000 [0x000000 - O0x3debf0d]
Flattened Device Tree blob at 43000000

Booting using the fdt blob at 0x43000000

Loading Ramdisk to 47526000, end 49fff79e ... OK

Loading Device Tree to 4751b000, end 47525226 ... OK

Starting kernel ...

Using boot scripts with U-Boot

U-Boot commands can be put together in a text file and then
the text files used to create a boot.scr. U-boot will look for the
script in the root or /boot directory of the first partition on the
SD Card, If not found it will look in any SATA disk present and
finally in any USB storage device present

sda-boot.cmd

#

setenv fdt_addr 0x43000000

setenv kernel _addr_r 0x47000000

setenv ramdisk addr_r 0x48000000

#

setenv bootargs console=ttyS0,115200n8 root=/dev/sdal waitforroot=3 rootfstype=ext4
#

ext4load scsi 0:1 ${fdt_addr} /boot/dtb/sun71i-a20-bananapro.dtb
ext4load scsi 0:1 ${kernel_addr_r} /boot/zImage-armv7

ext4load scsi 0:1 ${ramdisk addr r} /boot/initrd-armv7

#

bootz ${kernel _addr r} ${ramdisk addr r}:${filesize} ${fdt_addr}
#

Create boot.scr with:

mkimage -C none -A arm -T script -d sda-boot.cmd boot.scr

Booting via TFTP with U-Boot

Here is how | set up to boot into a Slackware install on a
BananaPro using a kernel, Initrd image and DTB located on
another computer set up as a TFTP server.

U-Boot environmental settings on the BananaPro’s SD Card
are default. After booting into a U-Boot command prompt |
use the following commands to set up for booting via TFTP
from the server at 192.168.1.2.

scanning bus 2 for devices... 1 USB Device(s) found
Hit any key to stop autoboot: 0

=> setenv ipaddr 192.168.1.9

=> setenv serverip 192.168.1.2

=> setenv gatewayip 192.168.1.1

=> setenv scriptname boot.scr

=> setenv scriptaddr 0x43100000

=> setenv tftpcmd tftp

=> setenv bootcmd '${tftpcmd} ${scriptaddr} ${scriptname}; source ${scriptaddr}’
=> saveenv ; reset

Booting via TFTP with U-Boot (cont)

Below the tftp-boot.cmd | use to create a boot.scr that is
copied into /tftpboot on the server, 192.168.1.2

tftp-boot.cmd

-

setenv fdt _addr 0x43000000
setenv kernel addr_r 0x47000000
setenv ramdisk addr r 0x48000000
e

setenv bootargs console=ttyS0,115200n8
=

tftp ${fdt_addr} slackwarearm-current/dtb/sun71-a20-bananapro.dtb
tftp ${kernel _addr _r} slackwarearm-current/zImage-armv7

tftp ${ramdisk addr r} slackwarearm-current/initrd-armv7.1img

I

bootz ${kernel _addr r} ${ramdisk addr r}:${filesize} ${fdt_addr}

Use the following command to ceate a boot.scr:
mkimage -C none -A arm -T script -d tftp-boot.cmd boot.scr

Use the following command to reset u-boot to defaults:
env -f -a ; reset

Booting via TFTP with U-Boot (cont,)

Here’s a bit of screenshot of a TFTP boot in progress. Note
that the bananapro dtb download is complete and the kernel
download has commenced

Executing script at 43100000

Speed: 1000, full duplex

Using ethernet@1c50000 device

TFTP from server 192.168.1.2; our IP address 1s 192.168.1.9
Filename 'slackwarearm-current/dtb/sun71i-a20-bananapro.dtb’'.
Load address: 0x43000000

Loading: #######
2.5 MiB/s

done

Bytes transferred = 31159 (79b7 hex)

CACHE: Misaligned operation at range [43000000, 430079b7]

Speed: 1000, full duplex

Using ethernet@1c50000 device

TFTP from server 192.168.1.2; our IP address 1s 192.168.1.9

Filename 'slackwarearm-current/zImage-armv7'.

Load address: 0x47000000

Loading: #H#H#HBHHBHRHBHRBHBBBBHBBBBHBBHBBBHBRRBHBRBBBBBBBBBBBBBB B BB B LB BB HRY
e e e e e e e e
e e e e e e e e
e e

That's about it for a lightening introduction. If there’s still some
time left I'd like to demonstrate U-boot using a USB To RS5232
Serial Adapter between my BananaPro and netbook.

If there’s not enough time may | thank you for your kind
attention.

References and further reading:

Keep in mind that U-Boot has a bi-monthly release cycle and
documentation found on the web may be out of date. However, | found
the following very helpful.

U-Boot/Documentation: http://www.denx.de/wiki/U-Boot
https://wiki.debian.org/InstallingDebianOn/Allwinner

http://processors.wiki.ti.com/index.php/Booting_Linux_kernel _using_
U-Boot

http://linux-sunxi.org

http://slackware.uk/slackwarearm/slackwarearm-
current/INSTALL_BANANAPI.TXT

https://wiki.debian.org/InstallingDebianOn/Allwinner

Addendum: Comparison of Boot Processes

U-Boot Boot Process

CPU ROM SPL U-Boot KERNEL

Loads SPL Sets up for Manual or Initialisation

U-Boot scripted
variables

RaspberryPi A and B Boot Process

GPU ROM ., GPU ROM_, GPU ROM __, KERNEL

bootcode.bin| "bootloader.bin start.elf and Initialisation

is loaded is loaded config.txt
are loaded

IBM X86 Boot Process

BIOS MBR Boot KERNEL

Initialisation Master Boot Loader Initialisation

Record Grub or Lilo

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

